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DESIGN OF A THREE-AXIS
ATTITUDE CONTROL SYSTEM FOR A
SPACECRAFT ACTED UPON BY RANDOM PERTURBATIONS
By B. Friedland, F.E. Thau and P.E. Sarachik

General Precision Systems Inc.
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SUMMARY

The design of spacecraft attitude control systems to counteract the effects of
random excitations such as induced by micrometeoroid bombardment is an important
problem in achieving the high pointing accuracy required for projected advanced missions,
including a laser beam communication system. The general problem of optimizing the
design for a nonlinear system with an arbitrary statistical performance criterion has not
been completely solved. In this investigation, the process to be controlled (a hypothetical
laser communication vehicle) was linearized about @ nominal motion and the design
performance criterion was the steady-state expected value of a quadratic form in the vehi-
cle state-variables. Use of this performance permits use of known results to develop a
design algorithm for the three-axis attitude control system. This design algorithm is em-
ployed to determine the structure and parameter values of the controller for the vehicle
and the statistical performance is simulated with the aid of a digital computer simulation

program.

The results obtained indicate that it is possible to achieve a 10 pointing
. o~ . . . . -
accuracy of approximately 0.2 sec in the assumed micrometeoroid environment existing
in the vicinity of Mars. This pointing accuracy can be maintained only for about 20

minutes ( as measured in "half-life").

This investigation takes into account only the effect of micrometeoroid
disturbances. Further investigation of other (random and deterministic) disturbances is
recommended. Also recommended is further study of the general problem of optimum

stochastic control.
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1. INTRODUCTION

The design of control systems for attitude control of space vehicles acted upon
by random perturbations has become an important practical problem in the past few years
as a consequence of the need to maintain the attitude error appreciably below a level of a
second of arc. Missions which require such accuracy include the fine-pointing of astro-
nomical telescopes and the pointing of a narrow laser beam for the purpose of high data

rate communication from a space vehicle.

In the conventional design approach it is generally assumed either that distur-
bances are absent and the control system is to be designed to return to equilibrium when the
system is perturbed momentarily, or that the disturbances are simple deterministic time
functions whose effect is to be overcome by the feedback action of the control system.

This approach yields satisfactory system performance in most practical situations, because

the requirements on performance are usually well within the capabilities of the equipment.
In the fine-pointing problem, however, the performance requirements are so severe that all
equipment must be used optimally; consequently it becomes important to take into account
the statistical properties of the disturbance sources and the sensor errors in the control sys-

tem design.

In 1966, the Aerospace Research Center of General Precision Systems Inc.
initiated an investigation of the stability of attitude control systems acted upon by random
perturbations. It was found [ 1] that micrometeoroid bombardment is a significant source of
impulsive disturbance torque which can rapidly cause large attitude errors if permitted to
build up. In particular, the micrometeoroid bombardment on a vehicle of the size of
Mariner 1V at an altitude of about 1000 km from the earth's surface, would be sufficient to
cause a pure inertia to deviate from an equilibrium position by 2 degrees in not more than
about 2 hours with a probability of 1/2. Since the tolerance required for precise pointing
is several orders of magnitude less than 2 degrees, it is evident that the random torques due

to micrometeoroids should be accounted for in the system design.



The first phase of our study (July 1966 to July 1967) of the stability of attitude
control systems acted upon by random perturbations was concerned with the general theory
and analytical techniques which are applicable to this problem. A tutorial exposition of
the applicable results of the theory of Markov processes was given, and the concepts of
"confinement probability", "half-life" and "mean confinement time" were defined and
studied by analytical and numerical techniques for a few simple control systems. Our con-
clusions were that practical analytical techniques for studying stochastic stability were less
than entirely adequate, and moreover, that the statistical properties of the random distur-
bance sources which may be present in a physical situation were not as well understood as

would be needed for meaningful statistical control system design.

These conclusions, we believe, remain valid; practical exigencies, however,
will make it necessary to design control systems for precise attitude control in the absence
of a perfected analytical theory and without a good knowledge of the statistical properties
of the random disturbance and noise sources which may be present. Accordingly, the phase
of the investigation reported herein represents an endeavor to apply the available theory
to a fairly realistic attitude control problem, that of controlling the attitude of a laser

communication spacecraft.

Modulation of a laser beam appears as an attractive possibility of obtaining an
energy derisity at the receiver high enough to maintain a data transmission rate of 105 to
]06 bits/second, which would be required, for example, for transmission of television
pictures in real-time. With the limited power available in space, the attainment of the
required energy density at the earth necessitates the use of an extremely narrow beam,
such as can be achieved only by use of a laser. The narrow beam width required, however,
creates a very severe pointing problem, since very small angular errors can cause the beam
to disappear from view of the receiving telescope. An indication of the pointing accuracy
required can be inferred from the angle subtented by the earth's diameter at distances of
the planets Mars and Jupiter, which are currently regarded as destinations for potential

interplanetary excursions:




Planet Phase Subtended Angle

Mars Conjunction 24 sec
Opposition 6 sec
Jupiter Conjunction 4 sec
Opposition 3 sec

Since the laser beam will probably be designed to illuminate only a fraction of
the earth's disk, the required pointing accuracy can be expected to be a fraction of a

second of arc.

In all likelihood, the required pointing accuracy will be obtained by use of
two control systems: a vehicle attitude control system to orient the vehicle and mechani-
cal axis of the transmitting radiator, and an optical vernier control system by which the

optical axis of the beam can be adjusted to accomplish the precise final adjustment.

The schematic diagram of a possible control system is given in Fig. 1.1, which
shows the vehicle attitude control system in heavy-weight lines and the vernier control
system in lighter weight lines. The total angular misalignment @ of the optical axis
with respect to the desired orientation is the sum of the mechanical misalignment angle 6
and the angle 7 between the mechanical axis and the optical axis. Since the angle
M can be adjusted by the vernier loop, the ultimate pointing accuracy is governed by per~
formance capability of that loop. It is observed, however, that the mechanical axis mis-
alignment is the source of excitation to the optical loop. Consequently, it is desirable to
keep the mechanical misalignment as small as possible, in some appropriately defined

sense.

In the present study, attention has been confined to an investigation of the de-
sign of the attitude control system. A thorough investigation would necessarily entail
examination of all sources of disturbance and errors which may be present, with particular
attention being given to those sources which experience would indicate to be major contri-
butions to attitude errors. For current state~of-the-art equipment, the major error sources

include such factors as sensor bias, null drift and misalignment, mechanical misalignments,
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and disturbance torques due to gravity gradients, gas leaks and outgassing, and solar re-
flectivity unbalance. The effect of these "d-c" error and disturbance sources in current
equipment are far more significant than the random torques (due primarily to microme-
teoroid bombardment) on the attitude error. Nevertheless, in order to concentrate our
attention on the purely random effeciz and the design problems pertaining thereto, we have
neglected the d-c error sources. Althougti it is not immediately apparent, neglecting the
d-c effects does not obviate the practical significance of the study: by proper design of
the optical vernier control system, we have found that it is possible to counteract the d-c
terms quite effectively; the random effects, on the other hand, pass through the vernier
control system with very little attenuation. As a consequence, the total error at the re-

ceiver may be primarily due to the random disturbances on the spacecraft.

Since the purpose of the control system is to maintain the orientation of the
optical axis within the field of view of the receiver for as long as possible, and thereby
provide the longest time of uninterrupted communication, it would be desirable to design
the control system to maximize the expected first passage time of the axis to the limits of
the region in which communication can be maintained, or to maximize the half-life in
this region. The theory for the design of an optimum system for these criteria, as noted
earlier, is not yet available. Consequently, the design criterion we selected was the

minimization of the stationary expectation of a quadratic form in the system state

;
V=E Q)= lin Bl [ %6 Qxi9 sl z(r), 7< 8 (1.1)

where z is the sensor output vector.

It is demonstrated (Sec. 3) that the controller which minimizes V for a
linear time-invariant process is also linear and time-invariant. An expression for the trans-
fer matrix G(s) for the optimum controller was developed, and a digital computer program
for the computation of this matrix of transfer functions was developed as a design aid. Al-
though the performance criterion given by (1.1) is not precisely what should be optimized,
it appears to be a reasonable performance criterion and has the advantage of being rou-

tinely applicable (with the aid of the computer program) to linear time-invariant systems of



arbitrarily high order, and explicitly accounting for the level of the disturbances and the
sensor noise. These random quantities were assumed to be representable by Gaussian white

noise with spectral densities on the basis of assumed (state-of-the-art) static accuracy and

correlation time, as described in Section 4.

A three-axis dynamic model was assumed for the vehicle. In addition to the
vehicle motion, a set of two solar paddles which move with respect to the vehicle were
included. To describe the motion of the vehicle, a system of 11 first-order nonlinear
differential equations were obtained. These, when linearized about a typical condition of
motion, lead to a linear time~invariant system for which the optimum transfer function
matrix was computed. The sensor package studied consisted of a set of star trackers meas-
uring angular deviations from nominal motion and tachometers measuring the speeds of a

set of three orthogonal reaction wheels.

To develop insight into the behavior of the closed-loop system without the com-
plexity of an eleventh-order system,a single axis (third-order) version of the problem was
considered in a preliminary study. For this simplified model, it was found that the optimum
design described above, with typical parameter values leads to a steady-state 1-0G  error
of 0.09 sec. While this figure looks excellent, it should be remembered, that this accu-
racy is based on micrometeoroid bombardment being the only source of disturbance torque.
A Monte-Carlo simulation was performed for the closed-loop process (which is fifth-order)
to determine the half-life of the system. It was found that the pointing accuracy which can
be maintained with a half-life of 30 minutes is in excess of 0.2 sec. On the other hand, the
1-0  pointing accuracy of 0.09 sec. is maintained with a half-life of under 4 minutes. The
half-life was observed to increase very rapidly for permissible angular errors greater than
about 30 , but is quite small for pointing accuracy much under 10 . In fact for very
small angular position limits, the uncontrolled system is superior to the controlled system,

which indicates that the performance criterion used is not very useful in this region.

The results of the preliminary investigation were verified with the more compli-
cated dynamic situation, in which, for the assumed nominal motion, the yaw-axis dynamics

(represented by a fifth-order model) were uncoupled from the dynamics for the coupled




pitch-roll axes (sixth-order model). The controller for the yaw-axis turned out to be third-
order and gave a steady-state 10 pointing accuracy of 0.127 sec. The pointing accu-
racy of 0,2 {ec was maintained for a half-life of over 10 minutes, but less than 30 minutes;*
a pointing accuracy of 0.1 s/;c, however, is maintained with a half-life of only about

1 minute.

The controller for the roll-pitch axes turned out to be sixth-order and gave a
steady-state 10 pointing accuracy of 0.2 se¢ which was maintained for approximately

30 -minutes.

The authors would like to acknowledge the contributions of Mr. Maurice F. Hutton
in programming the computer design algorithm and Mr. Sanford Welt in conducting the digital

computer simulation of control system performance.

* Insufficient computer time was available to simulate ensembles having a half-life of
of over 10 minutes.




2. REVIEW OF STOCHASTIC CONTROL THEORY

2.1 BACKWARD EQUATIONS

If one considers a deterministic system governed by the differential equation
x(T) = flx (1), u(T), T) (2.7)

for which the cost functional can be expressed as

T
Vi, ) =] Lx(T), u(m), ) ar (2.2)
t

where x(t) =y, it is well-known [2] that if any feedback law is used to control the sys-

tem, say
u(T) =0 (x(7))

then the cost which results for this feedback law satisfies the first-order partial differential
equation

'%:/":L(Y"’(Y)r*)‘* VV - fly, o), 1) (2.3)

where 7 V denotes the gradient of V with respect to y. This is easily seen by differ-

entiating both sides of (2.2) with respect to t.
For a system disturbed by additive white noise and characterized by
x(T) = flx(T), u(T)+ G(T) &(T) (2.4)
where {ﬁ} is a zero-mean white noise disturbance process with covariance matrix
Z(t)0(t -T) one might expect that the cost functional defined by
T
Viy, ) =E{] L&(T), u(T), T) dr|x() =y} (2.5)
i.

would also be governed by a partial differential equation, when a feedback law
u(T) =0 (x(7)) is used. This is in fact true and V can be shown |3 | to satisfy the second-

order partial differential equation




- E;—\f/=L(y,cr(y), N+IV - fly, o), 1)+ %v . (GZG'V V) (2.6)

where the operator V is again taken with respect to the components of y. This is one
form of the "backward equation" which is so named because it involves the earlier time t
and the state at this time rather than the later time T. Note that (2.6) is merely (2.3)
with an additional term due to the presence of the noise. This term contains second par-
tials of V with respect to y and thus stochastic problems require in general the solution
of second order nonlinear partial differential equations. No general methods exist for ob-
taining such solutions analytically. The backward equation is actually much more general.

Whenever a feedback law is used in (2.4), the equation can be written as

x(T) =gx(T), T) + G(T) §() (2.7)
where g(x, T) = f(x, 0 (x), T). It turns out [ 1] that the conditional expectation of any
function defined on the Markov process {x(T)} generated by (2.7) satisfies a backward

equation. That is the function

u(r, t, y) = EF(m)x() =) (2.8)
satisfies the partial differential equation (backward equation)
ﬂ:vu.g+—l-v.[GEG’VU] (2.9)
ot 2 .
Equation (2.6) can actually be obtained by using (2.9), since taking 8/8t of (2.5) gives
ov

T
= = ElL&(), o(1), Dlx(t) =y -jf % E{LIx(t) =y} dT (2.10)
Then, substituting the right-hand side of (2.9) for the expression inside the integral and

noting that for any linear operation o{ defined in terms of the space variable y

T . \ T .
SO CELx® =yRdr = [ [E[] Ldrix(t)=y}] (2.11)
t Ty CY t

we get (2. 6) directly. It should be noted that V as defined in (2.5) is the conditional
expectation of a functional defined on {x(T)} over an interval rather than an ordinary
function. Other important functionals on the process are also known to satisfy a back-
ward equation. Some, which have been found useful in the study of stability of randomly

perturbed systems are discussed in the next section.
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2.2 STABILITY MEASURES

Just as in the study of deterministic systems, it is important to have a measure of
system stability when studying randomly perturbed system. It is possible to define stability

in probabilistic terms in such a way that the definition is applicable to deterministic systems.
Consider the function q(t , y) called the "confinement probability", defined as

q(t, y) = Prob {x (T) €N forall 0=7 < t|xQ0) =y} (2.12)
where N is o finite region containing the origin. For a deterministic system the usual

definition of stability of the origin corresponds to the following:

Definition - The origin of a deterministic system is stable if and only if for
every neighborhood N of the origin, there exists a neighborhood M of the origin such

that q(» , y)=1 forany y in M.

For random systems it is too much to ask for such a strong type of stability;
however, the behavior of the confinement probability is still a good indicator of the sta~
bility of the system. Roughly speaking, the longer q(t, y) stays near one, the more stable

the system.

It turns out [4] that q(t, y) is one of those functionals defined on the process
{x (1)} which satisfies the backward equation (2.9). Thus, the evolution of q(t, y) can
be determined by solving (2. 9) subject to the obvious boundary conditions q(0, y) # 1 for
all y inside the region N and qft, y) = 0 forall y on the boundary of N. Hence,
for random systems, stability is no longer a property which is either present or absent, but
there are degrees of system stability.  In this regard we can measure stability by a quan-
tity t, called the "half life" of the system defined as the largest time such that
q(t, 0)= -;— for all t= M- Since qft, y) usually decreases monotonically with time,
this is the time it takes for the confinement probability to diminish to one-half when

the system starts at the origin.

Another measure of system stability is the "average first passage time" to the
boundary of the set N. Let the random variable T(y) denote the first time x(T) reaches

the boundary of N when x(0) starts at the state y.




Let the density function of T(y) be ry(T) . Thensince T(y) is non-negative, the average

first passage time is

Tly) = f’; Tr (T)dT (2.13)

It has been shown [ 1] that T(y) is related to the confinement probability by
Tly) = fo Tq(T, y) dT (2. 14)

and it satisfies a modified form of the backward equation, namely

-1 =vT.g+ %v-[GEGvT] (2.15)

We see from (2.14) that T(y) is a weighted area under the time response of qft, y),

and thus a number with physical meaning can replace the loose notion of keeping q(t, y)

as large as possible as long as possible.

2.3 STOCHASTIC OPTIMUM CONTROL

Perfect Sensor Observations - Consider the problem of designing a system with random

disturbances such as that of (2.4) so that the cost given in (2.5) is minimized subject to the
constraint that u(T) be inagivenset §& forall T€ [t, T] . We assume here that the
sensors used to measure the system state are perfect so that x(T) can be determined exactly
for T€[t, T] . It is well-known [2] that when no disturbances are present the minimum

O . . . .
cost V (y, t) satisfies the Hamilton-Jacobi equation.

v
Tl U(rr)l(nU[L(y,u,’r)+VV-F(y,u, t)] (2.16)

The optimal feedback law is that v € U which minimizes the bracketed ex-
pression. This is of course a function of y and t and is expressed as uo(t) =kly,v VO, T) =
Oo(y . 1) . Note that for the optimum deterministic system, the minimum cost V® satisfies
an equation of type (2.3) in which the right-side is minimized over the allowable controls.

It turns out [3] that when disturbances are present the same is true but with respect to (2. 6).

More explicitly, V° satisfies the stochastic Hamilton-Jacobi equation

11



- = U(T)ienu [Ly, u, ) +9V . fly,u, t)+ ;— 7 « (GZ GV V)] (2.17)

and the boundary condition V(y, T)=0. As in the deterministic case the optimal feed-
back law is that u° € U which minimizes the bracketed expression and is expressed as

W) =kly, vV°, 1) =0%(y, t). Thus, in order to solve the stochastic optimal control prob-
lem it is necessary to first solve the nonlinear second-order partial differential equation
which results when u° above is inserted for u in (2.17). This is a formidable task and it

cannot be done in general.

In the special case of a system with linear dynamics, a quadratic cost functional

and no input constraints, a solution is readily obtained. That is to say for the system

x(T) = A(T) x(T) + B(T) u(T) + G(T) &(T) (2.18)
with x(t) =y and
Lix(T), (T, T) = 3 [x' (1) Q(T) x(T) + ' (1) R(T) o(7)] (2.19)

one finds [3] that the solution to (2.17) is
Vo, 1) =y MB) y (2.20)

where M(t) is a symmetric matrix which satisfies the matrix Riccati equation

“M=A'M+MA+Q-MBRB'M (2.21)
with M(T) = 0. The optimal control law is
L1 = R B (1) M() y (2.22)

where we have been using y = x(t) . It is noted that this is exactly the same control law

which results when no disturbances are present.

Noisy Sensor Observations - The problem becomes even more difficult when observations

of the system state are mixed with noise and a satisfactory general theory of optimal control
in this case is not yet available. However, as before in the special case of system (2.18),

with noisy observations of the form

z(t) = H{t) x() + n(t) (2.23)




where {1 ()} is a zero-mean white noise process with covariance matrix I'(t) 6 (t - T)
and which is not correlated with the disturbance process {£ (t)} , to minimize the

quadratic cost functional

E{—;— J"T [x” (T) Q(T) x(T) + u(T)’ R(T) u(T)] dT | z(X) forall Xe [0, t]}
* (2. 24)
it has been shown [3, 5] that the optimal control is that given in (2.22) with y equal
to the conditional mean X (1) of the true state x (t) , given the data z(T) for T < t;

% (t) is obtained from the optimum Kalman filter [6]
X () = Al) x() + BE) o(t) + P H'OT ™' ®)[z() - HO) %) (225
with x(0) =0 and where P(t) satisfies the matrix Riccati equation
P=AP+PA’ + GZ G’ - PHT | HP | (2. 26)
with P() = E{x(0) x’ (0)} which must be known.
In the more general case where {£(t)} are correlated such that
Cov {E(t), m(T)} =S o -T) (2.27)
then x (t) is obtained from
X1 = A() x(t) + B(t) u®) + K{H)[z@) = H{E) %)) (2. 28)
with %(0) =0 where
K@) = [PG) H () + GO SBI T () (2.29)
and P(t) satisfies the matrix Riccati equation
b= AP+ PA’ + GIG’ - [PH’ + GS| T [HP + 5" G| (2.30)
with PQO) = E{x(0) x’ (0)} .

Thus again in the special case of a linear system, quadratic cost and no con-
straints, a general solution to the optimization problem is available even when the state
sensor is noisy, provided it is linear in the state and the noise is additive. If the noise is

not white then some additional complexities are introduced but a solution is available even

then [7].

13
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3. DESIGN FOR MINIMUM STEADY—STATE VARIANCE

Because the performance requirements for the fine-pointing attitude control
problem are so stringent, it is essential that the controller be designed to optimize the per-
formance of the closed-loop system. Ideally, it would be most desirable to use a design
which maximizes the mean first-passage-time to the boundary of the angular region outside
of which it is impossible to maintain communication. This would insure that the average
length of the period of uninterrupted communication would be longest. The region within
which it is possible to maintain communication, however, is not sharply defined, because
the cross-sectional energy density profile of the beam does not drop sharply to zero, but
rather decays gradually in a pattern approximating a Gaussian distribution. Thus as the
beam deviates from the center of the receiver, the number of errors per unit time gradually
increases. In other words a slight penetration into the "forbidden region" will not neces-
sarily entail instantaneous interruption of communication. For this reason, it would seem
feasible to design the control system to minimize the steady-state variance of the beam
position from zero. This criterion would permit incursions into the forbidden region but
would impose a heavy penalty for such incursions. Another reason for use of steady-state
variance as the performance criterion is that it is the only performance criterion for which

it is known how to perform the calculations required to accomplish the design.

In Section 2 we reviewed the result that the control system which minimizes the
expected value of the integral of a quadratic form x’Qx + u’Ru for a linear process
x = Ax + Bu + G& given noisy measurements z = Hx + M , comprises the optimum
controller for the deterministic process operating on the conditional mean x . The block
diagram for the combined filter which gives X and controller is shown in Figure 3.1 .
Wonham | 3] has shown that the controller which minimizes
. T

VB QxduRe) = dim e Bl [ ("Qx +u'Ru)dT lz(r), 7 <t} @.1)
T-too t
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Figure 3.1 - Optimum Steady State Compensating Network

(Combining Estimator and Optimum Gain )
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where Q ,R , and A , B, G , H are constant matrices, has the same form as

shown in Figure 3.1, but K and M assume their asymptotic values, i.e., M is the sol-
ution to (2.21) with M = 0 and K is given by (2.29) in which P is the solution to
(2.30) with P = 0. (If the process is controllable (observable) then a unique positive
definite matrix M (P) exists [6 ].) The minimum "asymptotic cost rate" in this case is

given by (2.31) in which the asymptotic values of P and M are used.

The optimum controller for this problem is thus linear and time-invariant; it can

be represented by the transfer-matrix C(s) defined by

Us) = = C(s)Z(s) (3.2)
From Figure 3.1 it is seen that

1 1 -1

C(s) = R 'B’M|sI - A +BR 'B’'M] K (3.3)

where

A= A-KH (3.4)
The term u’Ru in the performance index (3.1) represents a penalty incurred
for using large values of control, and is useful for limiting the total energy to be supplied
by the actuator. In processes where the size of the power supply is a critical limiting fac-
tor, the use of a fairly large matrix as the control weighting matrix R would be appropriate.
If ultimate performance is desired and one is willing to pay the price of the energy required,

the matrix R should be made vanishingly small.

In a deterministic process (x = x) however, omission of control weighting re-
sults in infinite gains from the state to the control and leads to the interpretation that the
input is a series of impulses with infinite energy which reduces x to zero in an infinitesimal

time (provided that the process is controllable).

In the stochastic case, on the other hand, it would appear, intuitively, that
infinite control gains are not optimum even in the absence of control weighting, owing to

the presence of noise in the observations. This intuition is reinforced by the configuration




of the optimum controller of Figure 3.1: as R -0 , R_] tends to infinity ; however,
because of the feedback through B, is is anticipated that the transfer function matrix

C(s) tends to a meaningful limiting form.

To investigate the nature of C(s) as R— 0, let

R = K21 (3.5)

then, for k2 > 0, the asymptotic form of (2.21) becomes

MA+A’M-—-]2— MBB'M +Q = 0 (3.6)
k

the solution of which is expressed as a power series in k :

_ 2
M-M0+kM]+k M2+... (3.7)

On substituting (3.7) into (3.6) and equating (matrix) coefficients of like powers of k,
it is found that (3.7) is a solution to (3.6) if

N\OB =0 (3.8)
and
MOA+A M0+Q—M]BBM] =0 (3.9)
M]A +A’M] - MZBB’M] - M]BB M2 =0

M2A+A M2 -M]BB M3-M3BB N\] -M2BB M2 =0

Pre-multiplying (3.9) by B’ , post-multiplying by B, and using (3.8) yields

B'Mm B = 'QB) "/

Thus, from (3.9) we have

_7 /n

B'M, = ('QB) V2q (3.10)
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where

Q=Q +A’MO

Hence MO is the solution to

0 = MAIZ - BB'QB)'B'Q] +[1 - QBB‘QB) BIA'M,
(3.11)

+Q - QBE'QBE) B'Q - M AB(B'QB)'B'AM
The gain of the deterministic control law is thus given by
“1.,., . B
R B'M = M, +kM_ +...)
k2 0 1
(3.12)
= L 1eran 28 Q rkermy +IPBM, L]

which, as expected, tends to infinity as k_] with k= 0. The transfer matrix C(s) of

(3.3), however, becomes

C(s) = [B’M] + Ok ) [k(sI - ;\) + BB’N\] + O(k)]_]K (3.13)

The inverse of the second matrix on the right hand side of (3.13) can be written

Kl - A) +BB'M = [kI +BB'M (s/ - A J(sZ - A) (3.14)
where
M = M, + O)
Hence
— ~ - = ~ -1 2
C(s) = B'M (sl - A) [kI +BB’M(sI-A) ] K+0Ok")
. ) (3.15)
= B’LIkI +BB’L]” K + OK*)
where
L= L6) = ML= A 3.16)




Let
F=&I+BBL)

Then
kF + BB'LF = I
or
(kI + B’LB)B'LF = B'L

Hence

B'LF = (kI +B'LB) 'B’L
Thus

Cls) = I+ B'M(sI- A) B B (I - A K + OK?)

Now, passing to the limitas k = 0, we obtain

C(s) = [B'M](sI - A)"B]"B'M](SI- Z\)K
- 1B'QeI- A BT QeI - Ak (3.17)
= [W(s)B] T W(s)K
where
Ws) = B'Qsl - A (3.18)

This is the required limiting form of Cfs) .

Tw=8" and C6) = BTK , inde-

If B isa nonsingular matrix, then (WB)
pendent of s, (where K isthe estimator gain.) Hence, if it is possible to influence
each state derivative directly, the optimum closed-loop system has the same dynamics as
the optimum estimator; in other words, the optimum feedback network converts the original

dynamic system into the optimum estimator of x if it is possible to do so.

Formula (3.17) for the transfer function C(s) is not suitable for mechanical

rational functions in s , and hence cannot readily be performed using only arithmetic

operations. An effective algorithm for computing C(s) is based on the relation of
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[W(s)B]-]W(s) to the following (n+k)x (n+k) matrix

n | k
~ |
SI"A | B n
AGs) =|—-=———+ - —
B’Q | O k
|
=sk-Z
where
L
A |"‘B
Z|-——=A---
-B'Q!t O
L |
50
E=-—-1—-—
0, O
- |
It is readily established that
\% I Vv
-1 11 | 12
A (s) = V(s) = it il dhe il
[W(s)B] "W(s) \ V22

In other words, the lower left hand submatrix of V(s) = A_] (s) is the required term

[W(s)B]—]W(s) , which when postmultiplied by K yields C(s) .

By inspection of (3.19) it is seen that

20

(3.19)

(3.20)

(3.21)




where N(s) = adj(sE- Z) and d(s) = |sE-—Z|. The matrices N, and the scalars dj are

J
numeric. The objective of the algorithm is the determination of Nj and dJ by use of
only arithmetic operations. If (3.19) contained I instead of E, Nj and dj could be
found by the well-known algorithm of Souriau [8 ] . A modification of Souriau's algorithm

is needed because E, not I, appearsin (3.21). First, it is observed that

|se-z|L = (sE-Z)adj (sE-2)
or
n~1 _ _ n-1
dys e d )L = (sE Z)(NO+N]s oo +N)
or, upon equating coefficients of sJ (/=0,...,n)
ZN =-d I (3.22)
n n
ZN =EN -d .4
n-1 n n-l
: ) (3.23)
ZN2 = EN3 - dzl
ZN] = EN2 - d]l
ZNO = EN]
0= ENO (3.24)
Moreover
N
. n _ -1 adj (-2)
e ek
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provided that Z_] exists. It thus follows that

N

n

d

n

Il

wdi(=2) (3.25)
|-z|

and these quantities can be determined algebraically by readily available computer pro-

grams. It is noted that

>

_B na
|z| = X = [B'QA
-B'Q 0

]Bl

(See [ 9] pp. 45 - 46). But A = A - KH isthe matrix corresponding to the minimum
variance estimator, which is known to be asymptotically stable if the process is observable
[6 ]. Since asymptotic stability implies that A have eigenvalue with strictly negative

-1 )
real parts, A exists for an observable process.

The existence of Z_] , Nn’ and dn permits rewriting (3.23) as

N =2 (N

n-J n-g+1 " Gn-g?) J=1,...,n  (3.26)

as the recursive formula for computation of Nj—] in terms of Nj and dj-— 1 Equation

(3.25) serves as a check.

A similar recursive relation for the coefficients of d(s) = |sE - Z| is obtained

with the aid of the well-known relation

d [Ms) |

o = trace [E%A—S(s—)— adj M(s) ] (3.27)
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for any matrix M(s). Applying this relationto V(s) = sE = Z results in

(h-1)d 72 (n-2)d k-3

= "N
. 2 + ... +dn—l trace [E(N. s + N_s Nn)]

0 1

or, equating coefficients of like powers of s

1

0 = trace (ENG)

o
|

= trace (EN])

d, = 1 trace (EN

L= (3.28)

2)

dn—l = trace (ENn)
Thus (3.26), (3.28) together with the starting condition (3.25) provide the required algor-

ithm *

Since the numerator of V(s) given by (3.21) contains the term Nosn it might
seem that the numerator of [W(s)B]-]W(s) is of higher degree than the denominator ;
this would imply that the controller, represented by C(s), would be required to differentiate
the sensor output, which would be an unacceptable design. Fortunately, however the lower

left hand submatrix of N_, in fact all terms except those in the lower right hand submatrix

0’
of No are also zero, since the n-th degree cofactors of A(s) all appear in the lower

right hand positions of V(s). Thus the numerator of [W(s)B]-]W(s) is of no higher degree
than the denominator. In general, terms of degree n-1 will be present in [W(s)B]-]W(s) ,

and hence there will be a direct path from the sensors to the control input. It should also

* A digital computer program for performing the calculation of the algorithm has been
prepared.
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be noted that the denominator of all terms of C(s) will be of degree n-1 (or less**), and
hence C(s) can be realized by use of a system of at most (n-1) st order, instead of requiring
the n-th order system which is needed when control weighting is used. Since the required
transfer function C(s) is of lower degree than the order of the process controlled, it is

evident that conditional mean X is not generated explicitly in the controller.

Several problems with the above method merit further attention. First, because
no weighting is placed on u in the performance criterion, Es(u’u) is infinite in general
because the numerator and the denominator of C(s) are the same degree. Hence the
"white" noise present in y gets through to u. This cannot be regarded as a practical
difficulty: if it were, it would be necessary to dispose of all feedback systems with a dir-
ect path from the output to the input which are in common use, The reason why the appar-
ent presence of "white" noise on u is no difficulty is that white noise is only a mathemati-
cal abstraction which is useful for design purposes but does not exist physically. A more
accurate description of the physical situation would reveal that the noise has a spectrum
which decays to zero for sufficiently high frequencies but is substantially flat at the fre-
quencies of interest for the control system operation. With this representation, Fs(u'u)
remains finite. A more accurate noise model could probably be accomodated by use of
well-known techniques, but the results should not differ materially from those obtained

here and would entail more computational effort.

Another problem, which W.M. Wonham has pointed out in discussion and cor-
respondence with the authors, is due to the formal derivation employed. Although the
control law obtained with arbitrarily small (but nonzero) control weighting is known to
exist and result in a closed-loop control system which is asymptotically stable when the
process is observable and controllable, the same facts remain to be rigorously established

when the control weighting vanishes .

The intuitive appeal of this design approach, however, has motivated its use

in the current study.

** It can be shown, in fact, that the numerators and denominator of C(s) are of degree
n-k , where k isthe rank of B,



4. CONTROL SYSTEM DESCRIPTION

4.1 VEHICLE DESCRIPTION

Based on information supplied by NASA/ERC and several discussions with NASA
personnel, we arrived at a "conceptual" spacecraft having the appearance shown in Figure
4.1 . The vehicle comprises a heavy (1300 kg) central core, 2m long and 1m in radius,
which contains the electronic equipment, sensors, power conditioning equipment, etc. The
power for the entire system, including the laser transmitter, is derived from solar paddles
which (by means of a separate control system) are kept oriented to the sun. Based on solar
cells of improved efficiency* we calculated that a total area (in 2 panels) of about 24m2 ,

and weighing about 100 kg, would be required to provide the total power demand of about

2000 watts, which is a rough estimate of the total power requirement.

Extending from the vehicle body is a lightweight sunshield and optical structure

weighing 100 lbs., 4 m in length and 0.5 m in radius.

This spacecraft orbits the planet under examination, which in this study was
assumed to be Mars. For simplicity, it was assumed that the vehicle orbital plane coincides
with the solar ecliptic plane and that the Earth and Mars also move in this plane. (This
assumption is not necessary in practice, but without it the derivation of the linearized model
would be more tedious.) It was also assumed that the spacecraft orbit around Mars is circular
at an altitude of 400 km. The corresponding orbital period is 2.05 hours. Since Mars occludes
the earth for nearly half the orbital period, one hour is all the time available for uninterrupted

communication,

It would be desirable to maintain communication for as large a fraction of this

time as possible by proper control system design.

JY S 'Y

* Current state-of-the-art [10] indicates an efficiency of about 50 m2/kw . Hence an
improvement in efficiency by a factor of about 4 is a

PP |
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The present study is concerned with the design and performance evaluation of the |
spacecraft attitude control system, the function of which is to maintain the mechanical axis
pointed at the receiving telescope as closely as possible. The control system for the mech-
anical loop is shown by heavy lines in Figure. 1.1. The system comprises the vehicle, the

sensors (star-tracker and rate-sensors), the actuators, and the controller.

To derive the differential equations governing the spacecraft motion, the com-
plete nonlinear equations of motion were derived. The state variables employed were the
Euler angles of the body axes with respect to an inertially-fixed reference frame, the com-
ponents of the vehicle angular velocity vector along the reference frame, the speeds of the
reaction wheels, (see description below) and the speeds of the paddles. This results in an
11th order nonlinear system. These equations were then linearized about the assumed nom-
inal motion described above to obtain an 11th order linear system. The details of the cal-

culation are given in the Appendix and the resulting linear equations are given in Section 6.

4,2 ACTUATORS

A typical actuation system which could be used for the fine-pointing problem
would comprise a momentum interchange device (in which angular momentum of the vehicle,
in excess of that required to maintain the desired motion is transferred to another rotating
device such as a reaction wheel or a control moment gyro) and a momentum discharge de~-
vice such as reaction jets. In the absence of any mechanism for removal of momentum from
the complete system, it is not possible to remove vehicle momentum indefinitely without
causing the reaction wheel or control moment gyro to saturate. Consequently a momentum
discharge device must be provided. In principle, it would be possible to use a momentum
discharge device alone. This would be undesirable for two practical reasons. First, in
order to remove system momentum it is necessary to discharge mass which must necessarily
be carried in the vehicle in place of useful payload. Second, a reaction jet system which
is operated frequently will invariably develop leaks which would have the effect of distur-
bance torques, the magnitude of which, in current state~of-the-art equipment couid exceed
the level of the disturbance torques due to other sources. The case in favor of using a dual

system, however, is not entirely clear cut: the momentum interchange device must, of
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course, have some weight in order to be effective. Moreover, with ion engines, it might
be possible to obtain very precisely controlled torque levels at very high specific impulse.
Such actuators could compare favorably or even be superior to the dual system. In view of
the relative novelty of ion-engines, we have elected to consider the more conventional
approach. Specifically, we have assumed that during the relatively short periods of pre-
cise control, only the momentum interchange device is operative. We have further assumed
that reaction wheels, rather than control moment gyros are used. For each axis a pair of
wheels, with axis coincident with the corresponding body axis was assumed, and each wheel
of the pair was taken to have a mass of 5 kg, a radius of gyration of 10.61 cm, a thickness
of 3 cm. This results in a moment of inertia of 0.1125 kg-m2 about the axis of rotation,

which would appear to be a reasonable size for the spacecraft considered here.

The wheels were assumed to be driven by ideal d~c torquers (no damping or other

losses) having the dynamic relation

L =0tV+,3<.uW

where .
L = delivered torque
V = applied control voltage
W, = reaction wheel speed, relative to body

The no-load speed w was taken as 100 rad/sec (=: 1000 rpm) and the time constant

NL
of the torquer driving the wheel was taken as 30 sec. The stall torque was taken as
Ts = -ﬁwNL = 0.375 newton - m which was assumed to be developed with a control voltage

of 25v. As a consequence of these assumptions it is found that

1.5 x 10_2 newton - m/v

R
il

-3.75x 10—3 newton - m ~ sec/rad

w
i

(See Appendix for calculation details)




4.3 SENSORS

Star-Tracker - The primary sensor of spacecraft motion is a 3-axis star tracker which can

determine the vehicle attitude by determining the location of the images of fixed stars on
a calibrated detecting surface, or by maintaining these fixed stars in the exact center of a
movable optical field and then reading the position of the field with respect to the vehicle
body oxes. There are numerous methods for constructing such a sensor. Moreover, new
mechanical configuarations are likely to be evolved during the next decade. For this

reason , we did not consider any specific form of star tracker.

In every realization of the device, however, there will always be a number of
errors inherent in the measurement of spacecraft attitude. As discussed in the Introduction,
these errors may be grouped into two categories: static or d=-c errors resulting from such
factors as null uncertainty misalignment of sensor axes from vehicle body axis (i.e.,
uncertainty in the position of the sensor axes with respect to the body axes) and random
errors due to noise. While, in present-day sensors the d-c errors are the principal sources
of closed-loop system error, they have not been considered in the present study in order to
focus attention on the effects of random errors. As previously noted, because of the pre-

sence of the optical vernier loop, the omission of d-c error sources is not entirely unrealistic.

The random errors in each star-tracker were modeled by "equivalent white noise".
To obtain the speciral density of the equivalent white noise it was assumed that the actual
noise consists of white noise passed through a first-order filter with a very short time con-
stant equal to the tracker "correlation time", (the time required to process the data to
achieve the specified static accuracy) and that the steady-state standard deviation ¢ of
the output of this filter is equal to the nominal sensor accuracy. This has the effect of

2

approximating the correlation of the output o< exp (- I71/T)/2 by an impulse correlation

function 02T 0(T) of the same amplitude. The spectral density of the star-tracker noise
is thus 02T .

. . N\
A typical star tracker would have a static accuracy of about 10 sec and a
correlation time of about 1 ms. Thus the spectral density of the equivalent white noise

was calculated to be
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(10)2x10_3 @2 sec

07 \2 10° 2
3600x 180/ = “60 '@ m!

qQ
-
H

= 3.9%x10 4 rod2—min

This is the numerical value used for the spectral density of the star-tracker equivalent

white noise.

Tachometer - Since a reaction wheel actuator is normally equipped with a tachometer to

measure its speed relative to the spacecraft, it was felt that the tachometer would serve as

a useful sensor of the vehicle motion for control purposes. As in the case of the star-tracker,
all the sources of error were represented as a single equivalent white noise source. The
standard deviation 0 was conservatively estimated at 30 rpm which is several percent of
the highest anticipated operating speed. The correlation time was taken as 10 ms, corres-
ponding to about one revolution of the tachometer at maximum speed. The use of this fig-

ure as a correlation time was verified with several engineers acquainted with tachometer

error sources.

The resulting spectral density of the tachometer equivalent white noise is thus

given by
-2 2
2. 2 10 _ rad .
gT=@B30x2m)" x 0 =5.9 <min> min
Rate - Gyro = In addition to tachometers, we considered using rate-gyros to measure

spacecraft body rates. As for the other sensors, the errors were modeled by equivalent
white noise. The steady-state accuracy was taken as 0 = 3 millivolts, where the sensitivity
is 260 millivolts/(degree/sec). The correlation time was taken as .01 sec. These figures
are typical of the C70 2021 Series of Rate Gyros manufactured by General Precision. The

resulting spectral density used is thus

2 _ m 2 -2 _ -8 rad 2 _ .
0T = (gpTge7) X0 x 107°=2.4x 107 (=" - min




4.4 DISTURBANCE TORQUES

There are two types of disturbance torques on the vehicle. The first type is due
to purely random natural phenomena. The principal disturbance in this class results from
the bombardment of the vehicle by micrometeoroids; the effect of this bombardment on the
vehicle motion is not negligible, and hence the design of a control system to counteract
the effects of this disturbance is not merely an academic exercise. Gas leaks are another

source of random torques.

The second type of disturbance torques is that caused by non random phenomena,
such as thermal distortion, gravity gradient, etc. In principle, such torques could be
completely counteracted in the control system design by programming equal and opposite
control torques. For practical reasons, however, the feedback mechanism of the control
system would be relied upon to provide the appropriate counter-torques. Although these
disturbance torques are estimated below for the sake of completeness, it is emphasized that

the effects of these torques is not the main concern of this investigation.

Random Process Torques

Micrometeoroid Bombardment - According to an analysis of Mariner IV data [11] the flux

of particles in the vicinity of Mars can be expressed as

P =0£mla parficles/m2 sec (T steradian)

where @ and B are constants and m is the particle mass. The zodiacal dust experiment

3

on board Mariner IV counted particles whose momenta were larger than m = 1.96 x 10~
. . . 5 .
dyne-sec. Assuming that all particles have the same velocity v = 10" cm/sec., we find

8

that the lower limit on particle mass is m, =1.96 x 107" gm. We also assume an upper limit
on particle mass of 1gm, @ =1.8x 1074 p<:|r'ric|es/m2 sec. (7 steradian), and B = -0.6.

Thus the upper limit on particle momentum is m_ = 10° dyne-sec.

2
Using the same approach as that of Section 2 of [12] we find that the value of o

does not affect the micrometeoroid momentum probability distribution which has @ mean M,
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B8+1 _ B+1

m m
m = ﬁﬁ ] 23 3 ] = .397 dyne-sec
2~ M
and a variance m’8+2 ) mﬁ+2
2 B 2 1 - 2 5 2
8" = -m “=1x 10" (dyne-sec)
SHE

Thus, the momentum bombardment process striking the symmetric vehicle is assumed to be

zero-mean white noise with variace o2 6(t) where [12]

o? = 4% 62 - 7.2 x 10_3 (dyne—sec)z/cm2 - sec

To convert this momentum process to an angular-acceleration white noise dis-
. . 2 . . 2
turbance process with variance ¢ 0(t) we use (5.24) in [1] with A=12m", r=3.8m,

J=100 n-m- min2 and obtain

c2 = r2A02/J2
=1.8x 10_12 (rad/min)2 - min

Gas Leaks - It would appear reasonable to model the random torques due to gas leaks by
a Poisson step process, i.e. a random step process with Poisson-distributed transition times

and normally-distributea transition levels.

A crude estimate of the magnitude of the parameters of the gas leak process was
obtained from Mariner IV data [1]: it was estimated that the average transition rate was

0.02/hr and the standard deviation of the amplitude of torque was 4 dyne~cm.

If reaction wheel control is used for the laser vehicle, we can expect similar
torques from this source, allowing for the less frequent use of the gas jets (for removing

momenta from reaction wheels)and the larger size of the vehicle.

It is noted that gas leaks are not a natural phenomenon; their magnitude depends
on the quality of the valves and other hardware used in the system. Hence, the numerical

values of the parameters describing the gas leak process can be made arbitrarily small de-




pending on care exercised in the fabrication of the system. It would be of interest to de-
termine the quality of equipment actually needed either to accomplish the desired objec-
tive or to make the effects of the gas leaks insignificant relative to micrometeoroids which

physically cannot be eliminated.

Deterministic Torques

Gravity Gradient - A significant deterministic disturbance torque is that caused by the

gradient of the gravitational field of Mars. The magnitude of this torque can be estimated by
assuming that the vehicle in orbit about Mars can be represented by two equal point masses
connected by a massless rod. Based on this assumption we find that the maximum gravity

gradient torque is approximated by

ng = gl/R

where g is the local Martian gravitational acceleration, R is the radius of Mars and 1
is the moment of inertia of the object. Using data which is representative of the laser com-

munication vehicle: weight (Earth) = 3000 Ib, radius of gyration = 1 meter, we find that

T =1.5x 104 dyne-cm
mg

. . -6 2
which corresponds to an angular acceleration of about 10 ~ rad/sec”.

Aerodynamic - Another significant deterministic disturbance torque is the aerodynamic
torque due to lift and drag forces acting on the vehicle as it moves through the atmosphere
of Mars. Although this torque is a function of the angle of attack of the vehicle, its maxi-

mum value can be approximated by

_ 2 /T
Tmo =3 Ov sS(CLa +CD)/

where 0 is the density of the Martian atmosphere, v is the orbital velocity, s is the dis-
tance between the center of mass and center of pressure of the vehicle, S is reference

area, C is the drag coefficient, and C, s related to the lift coefficient of the ve-

hicle. From [13] we find that at a height of 200 km, 0 is approximately 0.5 x 10—15

[p)
1

gms/cm3 . Using this figure and the following representative values:
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Weight = 3000 Ib
Radius of = 1 m
gyration

CLa + CD =2
= 1007/4 m”
s =5m

v = 24 x 103m/sec
we find that

T =0.8x 103 dyne-cm
ma

Because of the exponential variation of density with altitude, the aerodynamic torque is a

very sensitive function of the vehicle orbit.

Thermal Distortion - As the communication vehicle orbits Mars maintaining an approxi-

mately constant orientation towards the sun, thermal distortion of materials will cause a
change in the vehicle shape which can be interpreted as the effect of additional disturb-
ance torques which will, of course, depend on the type of materials used in the vehicle.
Three techniques might be applicable to compensate for these thermal distortions: 1) If the
thermal distortion can be predicted to sufficient accuracy, the vehicle might be designed
to have an inherent shift of center of gravity which will be essentially "equalized" natu-
rally as the vehicle reaches the Martian orbital environment; 2) Compensating elements
with inverse thermal characteristics to those of the principal components might be added to
the vehicle to counteract the thermal expansion of the principal parts; 3) Any biases
caused by thermal distortion could possibly be estimated by an appropriate filter in the

attitude control system.

Magnetic Induction - Interaction of the moving vehicle with the magnetic field of Mars is

another source of disturbance torque which is essentially deterministic. This interaction
results in eddy current torques as well as torques caused by the interaction of Mars' mag-
netic field with magnetic fields internal to the vehicle. Clearly these torques will also be

a sensitive function of the type and configuration of materials used in the vehicle. However,




it has been found from Mariner IV data [11} that the magnetic field of Mars is not more
than 0,001 that of Earth. Thus, it would appear that electromagnetic torques will not be

a major source of disturbance torques.

Internal Moving Parts = The normal functioning of the communication vehicle will involve

the motion of parts of the vehicle: solar panels, antennas, or the beam shifter. The motion
of these objects is another source of disturbance torques. The effect of this motion is incor-

porated directly into the dynamic equations of the vehicle as discussed in the Appendix.

Reflectivity Unbalance - A numerical estimate of the disturbance torque due to solar

reflectivity unbalance can be obtained from our analysis of a segment of Mariner IV

telemetry data [1]. It was found that a bias of 20 dyne~cm could be attributed to reflect-
ivity unbalance. Since the laser communication vehicle may have a surface area an order
of magnitude or two greater than that of Mariner IV, the same care as was exercised in the

design of Mariner IV could result in torques as large as 2000 dyne-cm from this source.
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5. SINGLE-AXIS STUDY

To gain insight into the structure of the fine-pointing attitude control system we
have considered the control of a single-axis under the assumption that the solar panels do
not deviate from their nominal motion. We have assumed that the momentum interchange
device for the single axis is a reaction wheel driven by a d-c torquer. Three different
sensor configurations were examined: star tracker and tachometer, star tracker and rate
gyro, and a combination of star tracker, tachometer, and rate gyro. The characteristics of

these components are given in Sections 4.2 and 4.3 .

The equations of motion of the vehicle and reaction wheel are

JO = L+¢ (5.1)

I (w +8)=-1 (5.2)

where the center of mass of the whee! coincides with the center of mass of the vehicle, J
is the moment of inertia of the vehicle, Iw is the moment of inertia of the wheel, 6 s
the angular position of the vehicle, w, is the angular velocity of the wheel with respect
to the vehicle, L isthe control torque, and £ is an external distrubance torque caused
by micrometeoroid bombardment. We assume that the control torque is provided by an
electric motor,

L = au + Bw (5.3)
w
where a and B are constants and u is the applied voltage.

If we define the state vector x as




where  is the angular velocity of the vehicle, then (5.1) ~ (5.3) become

x = Ax + By + G¢ (5. 4)
where
0 B/J 0 0/) [ 12
A =10 (8/J) (J/IW +1) 0 , B=|{(=a/N(+ J/IW) , G= -I/J (5.5)
] 0 0 0 0

Note that (5.4) and (5.5) could also be obtained from the complete 3-axis
dynamics of Section 6 by assuming that the solar panels do not deviate from their nominal
motion (i.e., )\4 = )\5 = 0), and that no reaction jet control is used. To correspond to

the numerical values of the previous section we have

4 2 4

B/1=10"" -3‘_=2x10' , D+YI)=2x10" , 1/3=2 (5.6)

2

where the disturbance £ is zero~-mean white noise with variance 026('r) , 00 =1.8x10

12

(rcld/minz)2 - min., as computed in Section 4.4.

A controller for system (5.4) was designed using the performance criterion of

Section 3, W = Es[x’Qx] , where

qg 0 0
Q=0 0 o0 (5.7)
0 0 qf

Note that the performance criterion serves to minimize the expected vehicle position and
velocity deviations, without regard to the velocity attained by the reaction wheel. The

performance of the single axis was determined for each of the above sensor configurations.

5.1 STAR TRACKER AND TACHOMETER

We assume that the measurements available to the controller are angular position,
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provided by a star tracker, and angular velocity of the reaction wheel, provided by a tach-

ometer, Thus, the measurement vector z = [z

1

Hx +n

N
i

where

o2 0 o2 = 5.915 (2 y?
w w min
L = 6 (t) ’
"o o 02 = 3.9% 10 (rad
Using the nomenclature of Section 3 we find that
“ r
[ 09551072 6.7 0 1074
K=| .0653x 10712 -2.56| , A=}o0 -2

| -.0169x 10712 3.66] 1 0169 x 10712

, 22] is given by

where the off-diagonal term in Q is the contribution of A’ MO and where

2961 x 10”2 (rad/min)? 565 x 102 (rad/min)?

~. 565 x ]0—]2(rcd/min)2 . 386 x ]0_]2(rc:|d/min)2

| 262 x lo"z(mdz/min) -.0997 x 10—]2(rad2/min)

(5.8)
(5.9)
min
(5.10)
- min
1 " 2 1
~6.7 @ 0 99
2.5, Q=0 0 o0
-3.66 | 0 O q% i
(5.11)
.262 x 10-]2(rad2/min)
~.0957 x 10712 (rad? /min)
1429 x 1072 rad)? )
(5.12)

is the asymptotic solution to the variance equation 2.21), obtained by numerical integration.

The elements of the weighting matrix Q were obtained as follows: because the

angular position accuracy is of critical importance to the fine pointing system a significant

weighting was assigned to deviations in angular position: a ratio q]/q2 = 10 was selected.




A number of other weighting ratios were also examined, and the influence of the weighting

ratio on the performance of the resulting control system will be discussed below.

where

where

then

where

From (3.17) we find that, for q]/q2 = 10 , we have

Ués) = -G, 6) GZ(S)] Z(s)

6. () = 50 10712)(0.352 + 1.75 +2.8)
1° G+ 14)

6. () = 50 4382 + 1545 +233
2%~ s(s + 14)

If we represent the controller by the dynamic system

51=_l5q+(§z

o o ~ 101072 -832.143
F - r G -12 '
0 -4 ~135x 10 23232.143
u = Eq + 1Lz
= . -12
K=11,11 , T=N5x10"2, -2150]

The closed-loop sys’rém shown in Figure 5.1, is given by

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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where

0 1074 -43
0 2 86 x 10
A= 11 0 0
-1
0 10 -832.143
-10
0 -1.35x10 23232.143
and
] 30x 1014
-1 60 x 10710
=10 0
0 10 x 10712
0 -1.35x10" "0

2x 10

-4 x 10

-832.143

23232.143

2x 10

-4x 10

-14

(5.20)

(5.21)

It is of interest to compare the response to random distrubances of the uncontrolled

vehicle with the response of the closed-loop system designed above. Since the {£, 1}

process is white noise, the output of the closed-loop system is a Markov process with co-

variance matrix Mc(f) which satisfies

where

M

C
02 0
2
= 0 g
w
0 0

AM +MA’+BIB’ , M (0 =0
C C C

(5.22)

(5.23)
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Sinilarly, the open-loop (uncontrolled) system has the covariance matrix M

O /

M. = AM. + M_A’ + BB'G 2

0 o+ Mg , M0 =0 (5.24)

Figure 5.2 contains a comparison of the 1-1 components of M. and MO . The
figure indicates that during a 30 minute interval the closed-loop system maintains the angular
position of the vehicle to an accuracy which represents an improvement of several orders of
magnitude compared with that of the uncontrolled system. Note that M. () reaches a steady-
state whereas Mo(f) is monotonically increasing. At the end of the 30 minute interval the
angular position standard deviation of the open-loop system is 26.8 sec whereas that of the
controlled system is .089 §ec. Thus the linear closed-loop system using a star tracker and
tachometer achievesasignificant improvement in steady-state angular position accuracy for
the single-axis subject to micrometeoroid bombardment. It is interesting to note, however,
that as indicated in Figure 5.3, for small values of time the angular position variance of the

uncontrolled system is lower than that of the closed-loop system.

Using a digital computer simulation we investigated the performance of the single-
axis controller for various values of the parameter X\ == q]/q2 . Table 5.1 indicates the

variation with X of steady-state vehicle angular position variance P, and steady-state

0

vehicle angular velocity variance P

TABLE 5.1
STEADY - STATE PERFORMANCE
. -
X 2 P
in rc:d2 in rc|d2/min2
5 282 x 10712 299 x 107"
10 187 x 10712 363 x 1011
50 149 x 10712 141 x 10710
100 146 x 10712 271 x 10719
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Since larger values of X indicate a larger weighting assigned to position errors compared
to velocity errors, one would expect that this would be reflected in lower steady-state
position variance and higher steady-state velocity variance for large values of A. Thus

the monotonic variation of P9 and Pw with X shown in Table 5.1 is to be expected.

Table 5.2 indicates the variation of the steady-state vehicle angular position

variance P, and steady-state vehicle angular velocity variance P with changes in sen-

6
sor accuracies: 0? 6 (t), the variance of the star tracker and 036 (t), the variance of the

tachometer.
TABLE 5.2
STEADY-STATE PERFORMANCE

2,92 | 2,2

/950 | 22920 Po Pes
in rad in rad”/min
N 1 05x 1072 | 771 <107
2 _ -14, 2
l 1 8710712 | 310711 910 =3-9%x10 (ad)” - min

o 2 _ rad \2 )

10 10 . 925 x ]0—]2 913 x '|O.-.I.I 020—5-9]5(m) - min,

Table 5.1 and 5.2 indicate that the closed~loop steady-state performance is relatively in-

sensitive to variations in performance weighting and to variations in sensor accuracy.

A series of Monte-Carlo simulation runs for X = 10 was made to determine the

dependence of half-life on angular position limits. The results obtained are given in

Figure 5.4 . Note that for a position limit of 10 = \/.187 x 10712 = 432 x 107 rad ,

the half-life is only about 2.5 minutes. It is thus quite evident that it is not possible to

maintain the steady-state 10 error for a very long time. The curve marked "Closed-Loop

Upper Bound " in Figure 5.4 was determined by using the probability

p{iom| < B

=0}

(5.25)
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as an upper bound on the confinement probability

q(r,0 = PL|6(r)| = B forall tysTsT|6¢) =0] (5.26)
Thus since the output process is Gaussian we find that
P{lOmM) | = B} = erf (B/VZ 0, (T)) (5.27)

where Gg (T) is the angular position variance for the closed-loop system. The "upper
bound" curve is drawn by using (5.27) and the data of Figures 5.2 and 5.3 . The fact that
the "upper bound" falls below the half-life curve given by the Monte-Carlo simulation,
indicates that the random number generator used in the Monte-Carlo simulation program
generates random numbers whose properties do not conform with those required to properly
simulate the white- noise acting on the closed-loop system. After an investigation of this
problem it was found that the random number generator does indeed provide a poor approxi-

mation to white noise.

The curve labeled "Open-Loop Upper Bound" was obtained by treating the open-
loop system as a double-integrator and using Figure 7-8 of | 1]. Note that for small angular
position limits the open-loop upper bound indicates a larger half-life than does the closed~

loop upper bound. This is similar to the situation described above in reference to Figure 5. 3.

5.2 STAR TRACKER AND RATE GYRO

We assume that the measurements available to the controller are angular position,

provided by a star tracker, and angular velocity of the body provided by a rate gyro. Thus,

the measurement vector z = [z] , 22] is given by (5.8) where
1 0 O]
H = (5.28)
0 0 1
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and {n} in (5.8) is zero-mean white noise with covariance matrix

o‘i 0 oi = 2.41x 1078 (%)2 - min.
Zn = , | o0 . e (5.29)
0 Tq Og = 3.9x 10 (rad)” - min.

-

Using the nomenclature of Section 3 we find that

r ) i } ) ) )
2278 x 1074 2.1482 ~2278 x 1004 1074 -2.1482
K= |-1656x107% -1.1958| , A =| .1656x10%* -2 1.1958 | ,
3476 x 1074 655 1 0  -.6555
-, i (5. 30)

9y 0 9,9
Q=10 0 0

2

~

where, again, the off diagonal term in Q is the contribution of A'Mo .

To compare the performance of the closed-loop system using star tracker and rate
gyro with that of the system using star tracker and tachometer, the performance weighting

A= q]/q2 =10 was chosen. From (3.17) we find that U(s) is given by (5.14) where

_ ap=5 221 1535
Gy6) =10 [*28“ s+10.655]
(5.31)
_ 201 2896
Cpl) = + 435+ == - {570,655
If we represent the controller by the dynamic system (5.15) where
-5
_ [0 0 B -221 x 10 -201
F - , G o -5 (5. 32)
‘.o ~10.655 1535 x 10 2896
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then the control u is given by (5.17) where
K=[(1,11 , T=[-287 , -435] (5.33)

The closed~loop system employing the star tracker and rate gyro as sensors is

shown in Figure 5.5 and is given by (5.19) where

576 x 107 1074 -8.7 .02 .02
1.151 -2 1.74x 10°  -400  -400
A = ] 0 0 0 0 (5. 34)
221 %102 0 ~201 0 0
1535 x 102 0 2896 0 -10.65
and
_ S -
] 576 x 10 -8.7
5
-1 1.151 1.74 x 10
B=1|0 0 0 (5. 35)
0 2221 x 107> 201
0 1535 x 1072 2896

The closed-loop variance shown in Figures 5.2 and 5.3 was obtained by using
(5.34) and (5.35) and nurerically integrating (5.22). From Figure 5.2 it is seen that aofter
approximately 10 minutes, the tracker-rate gyro system provides a 4 -fold improvement in
steady state angular position variance compared with the tracker-tachometer system. In
the time interval from O to 1 minute the tracker-rate gyro system also provides an improve-

ment in closed-loop angular position variance.
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5.3 STAR TRACKER, TACHOMETER, AND RATE GYRO

We assume that three sensors are used to measure the three state variables of the

single axis. The measurement vector z = [z], Zy, z3] again is given by (5.8) where

1 0 01
H=]0 1 0 (5. 36)
10 0 ]JI

and {M} in (5.8) is zero-mean white noise with covariance matrix

Ui 0 0 O‘i =2.41 x ]0—8 (r(:ld/min)2 - min.
_ 2 2 _ L2
En = |0 o, 0 o) , o, = 5. 915 (rad /min)” - min. (5.37)
o 0o o 02 =3.9x107"* fad)” - min.

Again using the nomenclature of Section 3 we find that

- -

405 x 104 =095 x 10712 6.8
K= |-.234x10% 065x 10712 2.54] |
109x 1074~ 168 x 10703 3.7
- i} (5. 38)
] -4 -4 ] " 2 )
-, 405 x 10 10 ~6.8 @ 0 a,
A= | .234x107% 2 2.54|, Q={0 o0 o0
] +168x 10770 -3.7 0o 0 g

To facilitate comparison with the two previous cases the performance weighting

A =4q,/q, = 10 was chosen and from (3.17) it was found that

UG = =1G,6), G,6), G,6)1Z6) 5.39)
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where

4 35.1 670

G](S) =10 [74.8 + N T +]3.7]
Y [ _ 8.65 103

GZ(S) = 10 -13.15 " + s + ]3.7]
i 497 22,700

GB(S) = 2]90 + s + ]3.7

If we represent the controller by the dynamic system (5.15) where

0 0 235.1x10°4  8.65x 10712

F - , & -
0 -13.7 670 x 1004 —103 x 10712

then the control u is given by (5.17) where

12

4 , +13.15x10 ©

K-11,11 , T - [-74.8x10

~497

22,700

-2190 |

(5. 40)

(5. 41)

(5.42)

The closed-loop system employing the three sensors is shown in Figure 5.6 and

is given by (5.19) where

-149.6 x 107° 1074 -43.8
2.99 -2 8.76 x 10°
A = 1 0 0
35.1x 1074 8.65x 10712 _497
670x 1074 Z103x107% 22 700

52
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1 -149.6x10°% 26310714 438 |
. 2.99 52.6x10710  8.76x 10°
B= 1|0 0 0 0 5. 44)
0 -35.1x 1074 8.65 x 10712 -497
0 670 x 1074 Z103x 10712 22700
i

Again the closed-loop variance shown in Figures 5.2 and 5.3 was obtained by
using (5.43) and (5.44) and numerically integrating (5.22). From Figure 5.3 it is seen that
in the time interval from O to 1 minute the tachometer controls the performance and the
closed-loop variance resulting from the use of the three sensors is quite close to the closed-
loop variance that results from the use of the star-tracker and tachometer alone. From
Figure 5.2 it is seen that in the steady-state the rate gyro controls the performance and the
closed-foop variance resulting from the use of the three sensors is quite close to the closed-

loop variance that results from the use of the star-tracker and rate gyro alone.




6. MULTIPLE AXIS STUDY

6.1 ASSUMPTIONS FOR SPACECRAFT DYNAMICS

The state variables employed io describe the vehicle motion in 3 dimensions are

the following:
W0 W . vehicle body rates

Wy, Wy w3 :  speeds of reaction wheels 1, 2, 3, respectively,
relative to body.

9] , 92 , 93 :  Euler angles of spacecraft body axes, relative to
a fixed inertial coordinate system.
Wy, Wy :  Angular rates of solar paddles relative to body.

The control variables employed are

V. ,V,,V :  voltages on reaction wheels 1, 2, 3 respectively.

177273
The only disturbance torques considered were those due to micrometeoroid bombardment.

Since satisfactory operation of the control system implies that the state variables
can differ only by very small amounts from the values they should have under ideal (nominal)
conditions, it is reasonable to linearize the equations about this nominal motion and thus
obtain a set of linear perturbation equations for which the control system is to be designed.
The reaction wheel control voltages V?L thus are the sum of the voltages V’LN required to
maintain the nominal motion, and the additional correction voltages us which depend on

the perturbations of the state variables from their nominal conditions.

To simplify the linearization, it was assumed that all planets move in a single
(ecliptic) plane which coincides with the plane of the spacecraft orbit around Mars. The
nominal motion of the spacecraft is assumed to be that in which the axis a through the
telescope is maintained in the ecliptic plane pointed to the Earth's center; the axis b
about which the paddles rotate is maintained normal to the ecliptic plane, and the third

axis ¢ maintained normal to the first two.
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For this assumed nominal motion it is found* that perturbations in rotation about
the axis normal to the ecliptic plane is independent of perturbations in rotations about the
nominally in-plane axes. As a consequence, it was possible to separate the design for the

former from that of the latter.

6.2 DESIGN FOR AXIS NORMAL TO ORBITAL PLANE

Dynamics - The five component state vector x = { Xpa oo X } is used to

5

describe the motion about the axis normal to the orbital (ecliptic) plane. The state var-

iables are defined as follows:

SR AN deviation in body rate from nominal
Xp T Wy =Wyt deviation in wheel speed from nominal

=fh, - : 6.1
x3 ] BIN angular error 6.1)
x, = W

4~ Y4 TN

- w - w : deviation of paddle speeds from nominal
*5 U5 YN

In terms of these state variables, and using the physical parameter (size, mass, etc.) of

Section 4 it is found that the motion about the axis normal to the orbital plane is given by
x = Ax + Bu+ G¢ 6.2)

where u is the voltage input to the reaction wheel, and £ is the white noise equivalent™
of the micrometeoroid bombardment process. Using minutes as the unit of time, meters for

length, and kilograms for mass, it is found that the matrices in (6. 2) are:

0 1.091 x 1074 0 0.4365 04365
0 ~2.000 0 -0.4365 0.4365
A = 1 0 0 0 0 (6.3)
0 -1.091x 1074 0 -27.71 0. 4365
0 1.091 x 1074 0 0.4365 27,71

* For details of calculation, see Appendix. Deviations from nominal values of state var-

iables are designated by )\Z'/ C=1,2, ..., 1.

** See Section 4.




B’ =10.0262, -479.9, 0, -0.0262,

[ 1.746 0
-1.746 0
G = 0 0
-1.746 109
1.746 -109

(6.4)

(6.5)

On the basis of the preliminary investigation described in the previous section,

it was felt that the sensors combination of a star-tracker and a reaction wheel tachometer

provide nearly as good performance as obtained by addition of a rate gyro, and this was the

sensor package studied for this application. The observation equation corresponding to

this set of sensors is
z =Hx+"

where z and N are each two-component vectors with

z, = tachometer output
z, = star-tracker output
n = tachometer equivalent white noise
n, = star-tracker equivalent white noise

The matrix H is

(6.6)

(For convenience, the scale factors of the star-tracker and tachometer were taken as unity -

volts/rad and volts/rad/min, respectively).
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Control System Design - The technique described in Section 3 was used to design the con-

troller. The performance criterion, was the same as used in the preliminary design study,

namely

E (' Q) = Es(xf+ 100 x2 6.7)

3
consequently the weighting matrix Q was taken as

- -

1 0 0 0 01

0 0 0 0 0

Q= 10 0 100 0 0
0 0 0 0 0

0 0 0 0 0

- J

The controller was designed with the aid of digital computer programs developed
for this purpose. Since the controller has two inputs: from the star-tracker and from the
tachometer and one putput: the reaction wheel control voltage, the controller is repre~-
sented by two transfer functions G] (s) = -U(s)/Z] (s) and Gz(s) = —U(s)/'Z2(s) . These

transfer functions have been determined to be

10 .695 s3+ 18.135 52+ 188 s + 277

53 + 44.4 52 + 467 s + . 765

G, ) = -10°

(6.8)

4 .36953+]2.1352+ 50.37 s + 55.17

53 + 44,4 52 + 467 s + 765

The resulting third-order transfer function matrix is synthesized by the use of

three integrators. The closed-loop block diagram (plant, sensors, and controller) is shown

in Fig. 6.1.

Performance Evaluation - The performance of the closed-loop system of Fig. 6.1 was simu-

lated using the MARKOV simulation program to determine the dependence of half-life upon

the angular position limits. The results, shown in Fig. 6.2, indicate that for an angular
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position limit of 10 = .618 x 10—6 rad = . 124 arc seconds the half-life is only about 2
minutes . Thus, it is difficult to stay within the steady-state 10 error for more than 2
minutes. The curve marked "upper bound" in Fig. 6.2 was obtained by using the closed-
loop variance shown in Fig. 6.3 and the expression (5.27). The crossing of the two curves
in Fig. 6.2 is again caused by the imperfect random number generator used in the MARKOV

simulation program.

It is interesting to note that these results agree closely with those shown in
Fig. 5.4 for the single-axis approximation. The half-life indicated in Fig. 6.2 is slightly
lower than that indicated in Fig. 5.4; this can be attributed to the presence of the solar

paddles which were not included in the design of Section 5.1.

6.3 DESIGN FOR AXES IN ORBITAL PLANE

Dynamics - The six component state vector x = [x] ;e e e xé} is used to describe
the motion about the two axes which are nominally in the orbital plane of spacecraft

motion. The state variables in this case are defined as follows:

X, =W - w = deviation of rate about body axis nominally
] a alN .
oriented toward earth
X, =W o= W= deviation of rate about third body axis
X3 =w - w]N = deviation from nominal of axis a reaction

wheel speed

=, - W = deviation from nominal of axis ¢ reaction

X
4 3 3N wheel speed

x =6, -6 = angular error about axis nominally earth oriented

5 2 2N
X, = 93 - 93N = angular error about third axis
In terms of these state variables, the linearized dynamic equations take the form
x =Ax+ Bu+ G§ 6.9

where

v = control voltage on reaction wheel ¢ (L =1, 3)
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and the matrices A, B, and G are given by:

- 1235x10° 10 4.552x10°° 4992 %1674 1,639 x107'° 0 0
-1.502x107 -0.73 x107"" 093 x161° 3838 x 107 0 0
1235 %1070 -4.552x10° -2 -1.639 x 10710 0 0
A= —
1.502x107  0.78 x107'" —093x160 -2 0 0
0 M 0 0 0 -.35x10°
L 0 0 0 .35x107° 0
6.10)
- Lon 18 x 107
-8
1.8 x 10 .0092 ]
~597.96 -1.8x 1078 T
B: _8 ’ g: — (6.]])
“1.8 x 10 -479.9 T
| 0 0
i
0 0
) P
.0799 122 10
122x 1070 614
_ _ a
-.0799 ~122x107° 1.8 x 10712 0o
G- s 5= L, 612)
122 x 10 -.614 0 1.8x 10712,
0 0
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where TO is the torque about the a axis, TC is the torque about the ¢ axis, and

0l-02-1.8x 10712,
a C

The underlined terms in the above matrices represent the principal paths and
correspond to the dynamics of the simplified model studied in the previous section. The
remaining terms represent the effects of cross-axis coupling. These cross-coupling terms
are quite small, but since we don't know whether they are negligible, we have included

them in the design study.

The sensors for this pair of axes again were assumed to consist of star-trackers

and reaction wheel tachometers. Accordingly, the observation equation is

z=Hx+n (6.13)
where
z] = measurement of w]
22 = measurement of w3
23 = measurement of 92
24 = measurement of 63
the H matrix is
0 0 1 0 0
H = 0 0 0 ] 0 0
0 0 0 0 ] 0 6.14)
0 0 0 0 0 }
and T)‘ = tachometer noise
772 = tachometer noise
773 = star-tracker noise

?74 = star-tracker noise




5.915 0 0 0
r- 0 5.915 0 i 0 (6.15)
0 0 3.9x 10 0
0 0 0 3.9x 1074
Control System Design - 1t was found that {3.11) did not have a unique solution for the two-

axis design. This may be caused by the fact that the system (6.9) with A and B matrices
given by (6.10) and (6. 11) is not completely controliable. Thus the theory of Section 3 may
not be directly applicable to the design of the two-axis controller. Another cause of the

problem may have been the ill-conditioning of the coefficient matrices of (3.11) which may

have caused numerical errors.

For this reason values of k =.1, .01, and .001 in (3.5) were chosen and

solutions M(k) to (3.6) were obtained with

0O 0 0 o0
o 1 0 0 o0
o 0 0 0 0
Q=10 0o 0o o o 6.16)
0 0 0 100 0
0 0 0 0 100

These solutions were substituted into (3.7), truncated after the third term, and the |
resulting 3 equations were solved for MO = ﬁO which was taken as an initial approximation
to the actual value of MO . Using FI\\;\O as an initial condition, (3.11) (with the left side
replaced by MO) was integrated until a "steady-state" was reached. It was found that,
although some terms in the resulting Mo were close to those of ;\7\0, others were not.

Because of this discrepancy it was decided to choose the value of k =.001 and to proceed

with the design using performance index (2.19) with Q given by (6.16) and

= - 17
R 0 1016 (6.17)
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Hence, in agreement with the design philosophy of Section 3, very little penalty was assigned

to the use of control.

The controller was again designed with the aid of digital computer programs devel-

oped for this purpose. Since the controller has four inputs, from the two star trackers and the

two reaction wheel tachometers, and two outputs, the two reaction wheel control voltages,

the controller is represented by the dynamic system

H

X

Ax + Bu + K(z - Hx)

B"M

k2

where M is the solution of (2.21) with M = 0,

~—

l . 201 xlO4

L 154x10)
- 40510
M= 369x10°
985107
" .910x10°

1
—

.]54x]0_]

.178x10]
.309%x10
.303x10
114x10]

.693x10

6
4

]

6
6
6
11
7
1

.405x10°
.309x 10
.814x10
742x10
-.198x10
.183x 10

.369x 10
.303x 10"
742516 "
.573x 10
.967 x 10
167 x 10

6
4

4
6
6

-.985x10'3

.1]4x]0]
-.198x10
-6
.967 x 10
179%102
3

-.454x10

7

K is given by (2.29) in which P is the solution of (2.30) with P = 0,

(—.892x10_]5

-~ 179x10° 18
48210

907 x10 7

_.614x10 "

—.293x]0—]5

k-

130x19 '8

402x10° "3

.907x10']9

261 x10 '3

823x10 4

.225x]0_]9

.204%x 10
417 %10
-.931x10

~.125x10"

.289x 101

.109x 10

4

5

4

.543
J161x10
-.445x10
-.341x10
109x10°4
.104x10"

4
1
5

and A, B, and H are given by (6.10), (6.11), and (6.14), respectively.
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6.19)

.
.9]0x]03
2

.693x10
1

.183x 10
-6

167 x 10

- 454107

.427x103

(6.2(;)

6.21)



The resulting sixth-order controller is synthesized by the use of six integrators.
The closed-loop block diagram (plant, sensors, and controller) is shown in Figure 6.4 . It

is interesting to note that in comparing the characteristic equation of this sixth-order con-

troller with that of the fourth-order controller which was obtained by using a design based

on MO’ it was found that four of the six roots of the former were close to the four roots of
the latter and that the remaining two roots of the former appeared to be close to a pair of the
latter. It thus seems that the controller with k =0 has a fourth-order characteristic poly-

nomial but requires six integrators for its realization.

Performance Evaluation - The performance of the closed-loop system of Figure 6.4 was

simulated using the MARKOV simulation program to determine the dependence of half-life
upon the angular position limits. The curve marked "Monte-Carlo Simulation" in Figure 6.5
was obtained by determining the first time that each member of an ensemble of trajectories

escaped from the region

R=1{8,, 6, : lezl < B, |e3| < B} 6.22)

2

The curve indicates that for an angular position limit B = .6x ]0_6 rad. = .12 arc seconds
the half-life is about 5.5 minutes. Thus there is a probability of only 1/2 that the trajectory
of the closed-loop system will remain inside the region R (with B = .12 arc seconds) for
more than 5.5 minutes. The curve marked "upper bound" in Figure 6.5 was obtained by using
the closed-loop variance shown in Figure 6.6 and the expression (5.27). The "hump" in the
upper bound curve is caused by using the variance labeled "Pitch Axis" for 0=t < 2.4
minutes and then using the variance labeled "Roll Axis" for 2.4 < t in the expression (5.27).
It is interesting to note that, as in the case of the single-axis controller of Section 6.2, these

results agree closely with those shown in Figure 5.4 for the single-axis approximation.
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7. CONCLUSIONS AND RECOMMENDATIONS

On the basis of the results achieved in Sections 5 and 6 above it is our conclusion
that minimization of the steady-state variance is an effective technique for the design of an
accurate fine-pointing control system. From the computer simulations of control system per-
formance it was found that the "minimum steady-state variance" criterion yielded results

which would be consistent with a "maximum confinement probability" criterion.

The fact that for the single-axis approximation the uncontrolled system has a lower
angular position variance for small values of time than did the closed-loop system indicates
that a combination of passive and active control might be considered for future fine-pointing

control systems.

A number of problems regarding the design of control systems in the presence of
random perturbations require further study. A more complete study of the fine pointing prob-
lem for a spacecraft should take into account a more detailed treatment of the system dynamics,

for example, the flexibility of the telescope sunshield which was neglected in our investigation.

A significant source of random disturbances which was neglected in the present study
is the random bias torque caused by the difference between the actual and nominal values of
deterministic torques and the imperfections in the vehicle or control system construction. The
principal random bias torques are those caused by misalignment of actuators and by solar re-
flectivity unbalance. These disturbances result in forcing terms of known form but of unknown
magnitude appearing in the equations of motion of the vehicle. For example, the dynamics of

the vehicle may be written as
x = f(x) + k

where k is an unknown constant. The attitude control system can be designed to take these
bias torques into account by treating k as an additional state variable. We may thus aug-

ment the sysiem dynamics as foiiows
x = f(x) +y

y =0, y@0) =k
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and estimate the state variable y as well as x.

Although our study was based on a fixed vehicle configuration it might be possible
at an early stage in the design of a future communication vehicle to optimize the spacecraft
configuration according to a suitable design criterion. This parameter optimization problem
is essentially nonlinear and would probably require an iterative numerical solution on a digital

computer.

As mentioned in Section 6 the question of existence and uniqueness of solutions to

(3.11) is of critical importance for the application of the design technique of Section 3 based

on minimizing the steady-state variance in the absence of control weighting. This problem

requires further study.

Another problem requiring further attention is that of maximizing the expected
first passage time to the boundary of a set given that the initial state is inside the set. It
would be of interest to determine the relation between the control law based on this criterion

and that which is obtained by minimizing the steady-state variance.

As mentioned in Section 5.1, it is essential that the algorithm used to provide the
simulation of a random excitation properly model the characteristics of the noise used in the
theoretical study. Thus the improvement of noise generation algorithms also deserves further

study .




APPENDIX
VEHICLE DYNAMICS

In order to design the attitude control system and subsequently simulate its perfor-
mance, it is necessary to have a fairly accurate model of the vehicle dynamics, including
possible cross axis coupling terms. For this purpose we assume that the principal moving parts

in the vehicle are the following:

1) The vehicle body and telescope rigidly mounted thereon.

2) Three double reaction wheels (nominally aligned with the vehicle principal
axes and centered at the center of mass) torqued by d.c. torquers with "ideal" characteristics.

3) Two solar panels (nominally aligned with one of the principal axes orthogonal
to the mechanical axis of the telescope). Additional panels or other moving parts can be

treated in a similar manner.
The mechanical axis of the telescope is taken as one of the vehicle principal axes.

The vehicle state is defined by the following vector

y={§>°,w,wc, @y, g 9,,62,9.3, wi,ws}
body rates reaction wheel Euler angles Solar paddle
speeds (relative with respect to rates relative
to body) inertial reference to body
system

The control variables are assumed to be the quantities in the control vector

v=1{V, ,V V,, T T T }
1 : c

2" "3" ra’ fb" r
voltages reaction jet
applied to torques
reaction

wheel torquers

Nonlinear Equations of Motion

The nonlinear differential equations of motion relating the state variables to the

control variables are derived in this section.
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Consider a vehicle with N moving parts and let the first N0 parts have relative
motions with respect to the main body which are completely known as functions of time. The
remaining NO + 1, ... N parts are connected to the main body (but not to any other part)

via some constraint. We will use the following notation:

EO = inertia tensor of the main body relative to a set of axes (_6_0 , —E—b , éc) passing through
the center of mass of the main body and fixed in the main body (i.e., origin of body
axis system is at c.m. of main body)

JZi = inertia tensor of Lf—h— part relative to axes passing through the center of mass of the

th . .
1 — port and aligned with (go , éb , éc)

ry = vector from origin of body axes to c.m. of 1— part.

w, = angular velocity 1th part relative to body axes.
w = angular velocity of main body relative to some fixed inertial axes.
R™* = vector from the origin of the inertial system to the origin of the body axes system.
m_ = mass of main body
0
3 th
m, = mass of L— part
N .
M = t§O m, = mass of composite body
1 N | .
R = w Lzz:] m, r, © vector from origin of body axes to c.m. of the composite body.

| —t
H

, = the external torque applied to the 1th body (for 1 = O this refers fo main body)

Itjz interaction torque of ‘Lm body due to JIb- body (note T'LJ = —Tjt)

We can write the equation of motion of each body separately as*

Tot M

* Roberson, R.E. "Attitude Control of Satellites and Space Vehicles", Chapter of book
"Advances in Space Science" pp. 351-436. Academic Press.




for the main body and N |

0 2
d _ ¥ d
g L@t o) Fmprpenl =Ty + T T, 0= Toy = myry x— R @)
J=1 dt
th .
for the 1— body with t =1, ... N
Note T, J—_Qfor 12 NO + 1
Sumeq. 2) for 1 =1, ... N0 and add to (i) to give
d Mo
a—f—llog + 2.1223]{1 wtw ) + m, errL}]
_ NO N NO NO NO d2 .
T,.+ ZT1,+ Z T, + & T - L om,r,x—F
IS 1,=N0+1'°1’ p=1 =170 e B g
NO N0
but ifl jE] Itj = 0 since Tz',j = _Tjt so the equations governing the unknown
motions are
NO .
_._[IO(,_., + E]{I (w +gt) + mz‘,-f-i,xf-i}]
@)
F ST D 2 e fE
= + T, + Tas = m,r, x —=
S L=NO+]—0L =1 U g
and
d dzﬂ_*
S, (w + w) + erbxr ] = 1 = Tpy = miIx " (4)
2 *
To determine > the equations governing rectilinear motion would have to be solved in
dt
general. i.e. d2 N
M (R* +R)=F+ T F,
e
d2
and Ld2[R*+r]:—L_EOL
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However, if the composite body is moving in a uniform force field so that the forces acting

at the origin and at each body m, are the same then by defining

A

R* =R + R* = the vector from the origin of the inertial system to

the c.m. of the composite body

we can replace R* in (3) and (4) by

R

d2 ot
and the quantities ;—2— (R*) may be eliminated provided the torques due to the uniform
force field are eliminated from the I—O and L./ terms. (i.e., the rotational effect of a

uniform force field cancels out so it may be neglected from the start).

We will assume that motion is in a uniform force field so (3) and (4) become

N
d 0 ,
arfoe tflwf,("i twy) tmy g xr ]
(5)
o NN No I
=T + Z 1.+ I T, +* Z m,r,x—= (R)
I z;=N0+l_OL p=1 U g T
and
L (wrw, )+ Pl =T, - T+ d” R) ©)
g T ET L) MG T L T Lo T ™k d?(—

Rotational Motion Only

When all the centers of mass are rigidly fixed in the main body, then the motion
of each part with respect to the main body can only be a rotation about its individual mass
center. Since all time derivatives in equations (5) and (6) are time rate of changes as

viewed from the inertial reference frame from | 14 |

d _d )
8?[9“) ]inertial T dt la (t)]body Pw body xa(t) )




TR g

we have E—t =wxr, and E = w x R so eq. (5) becomes

No
-——[]Iow + T {JI (w +w) +er XWX, }]
L:
®)
Ny N o
=T.+ ZT,+ T T..+ Z m,r,x— (wxR)
-0 1121’{' i:NO'H—OL 4= 1-17 dt
. T T
Using axbxc =f(@*c)b-(a-b)c=lacl-calb (©)
we get mt(rtx_c_l_)x_r.) :mt[-fl-':tl--ftflleéjt"—’ (10)
Again applying {7) gives
S (@xR) = @xR + wx (@xR) o)
and thus from (9),
m L x@xR = ?[_LB_I— Rr J o = A @ (12)
Inserting (10), (11) and (12) into (8) gives
] No No
a;[./lo-w— + LE (ﬂ +J] Jw + E ‘Etwtl
oo NN o A o
=T.+ & T, + T T.+ Z w + Zm._[,xlwx(wa)]
0t t:NOH#OL 2 T 2 I
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and upon using (7) this becomes

NO N0
[JZO+ Z (Z +JJ7;)]UB +¢3xuzo+ z (‘Zli, +J|L)]u_)
L= =1
N0 .
* ,,E] L, w, + (@ + @ )xd; w ] (13)
N NO~ N NO N
=T .+ ZT T, + Z T .+ T A, w+ m,r, x| wx (wxR)]
-0 7,/21—1, t:NOH_OL 11 it = 1=1 (=Lt =N 2
Now from (9) we write
r, x|l wx (WxR)] = [rT (wxR)I - (wxR) T]w
mt_Lx _X _X_ m_(./ _1/ _X_ _X_ LL w
but note that
_ T T
W x Ai,.‘t’ =m;lwx (r; RZ - Rr, ) w]
T T
=m [, R) (wxw) - (r; @) (wxR)]
-
0

thus mil‘tx[_u_Jx(chjR_)] W x ALL_O +mz',l—r1‘,' (wxR)] w

also let “'L ﬂt + le./ - Ai
A "o
and I =7 + T L
0o . 1
=1
so (13) becomes N No N
It wxdw =T+ T T, + Z Th: .
- -0 A L=N0+]—Oi’
. a4)
0

) Lf] Lo, v (e +w)xlyw - m - (@xR)]w




No

Note: When N0=N, then E mL[_rL - (WxR) =MR . wxR=0
1 =2 20 ®ExZ2

For rotational motion only (4) becomes similarly

d ) —N
a;[ﬂl.(w+u.t)+m erwxr]—L./-I_Ot m, T, d’r[wXR]
d ' o~ .
% gl * J)e L) =T, - T, + Ay @+ myrxlwx (wxR)]
thus
[y + 0y = AT +exll + JJe + Lo+ (@ +w)xd o
=Ii,_101', +‘£XA1,‘£ +mf,[£t' (wxR) w
SO
Liw fwxl,w + 1w + (@~ ‘:"_7;)"17;‘21, =T, - 1_07; + mi[.’f, * (@xR)] @
(15)
for 1/——'N0+l N

In order to complete the description of the vehicle attitude motion we must

describe the orientation with respect to the fixed inertial reference axes.

It has been found most convenient to define the Euler angles 6., 8, , 6, as the

angles shown in Figure A1. Here the body having a set of body axis dire!tionf ind?goted
by x",y"', z' isoriginally aligned with a set of inertial axes indicated by x, y, z.
The body is first rotated about the z direction through an angle 9] , as shown. It is
next rofated about the resulting x’ axis (denoted by &) thus specifying 62 as shown and

finally it is rotated about the resulting z’' axis thus specifying 6, as shown. Note that

3

z denotes the direction of the z’ axis after the first rotation and 1’ denotes the direc-

tion of y’ after the second rotation.

We will consider the case in which the vehicle body axes gﬂ . &

2b

and are
£, ar

=z, g e, B =y (16)
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FIGURE A-1 DEFINITION OF EULER ANGLES
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With the correspondence of (16) we find that

[w_ sin 6, 0 1] 6,
w | = | cos 62 cos 93 sin 63 0 62
w -cos B, sin 6 cos 6 0 b
2 3
- <L 3 Ll (17)
so that
[ i cos 6 sin 6 ] [
. 3 3
6] 0 6 B 6 “a
cos 6, cos 6,
é2 =10 sin 63 cos 93 W,
2 1 - tan 6, cos 6 tan 6, sin 6 w
73] L 2% 73 27773 e 18)
Let us now apply equations (14), (15) and (18) to give the dynamic equations
governing the motion of a space vehicle having three independent reaction wheels used to -

control vehicle attitude and two banks of solar batteries in the shape of paddles which can
rotate independently about a fixed axis through their respective mass centers (Fig. Al ) in

order to track the Sun.

We note that all these parts are of the second type since their motions with re-

0=OondZZ=J[O.

Let a. for 1 =1, .. .5 be the unit vector in the direction of the rotational axis of

—1L

spect to the main body are not completely known time functions so N

each moving part so w, = w, a, . If we denote by Ia'L the moment of inertia of each

2

part about its axis a, and choose b?', ond ¢, such that a; Ei’ < forms a right-

=1
handed orthonormal set for each ¢ =1, . . . 5 and letting Ibz' and Ici, be the moments
of inertia of the im body about —k-)-f, and ¢, respectively we can write
I, =7 .a.a +1 .b,b +1 T dor i=1 5 19)
t T a9 T2 TS o re U7
Note - For the reaction wheels (i.e., 1 =1,2,3) Ibi; = Ici,'
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The interaction torques can be resolved in the directions a, EL and ¢, as
_ .a b c . .
IO?L = TOI',E?L TO b, TOLEt . Also when an electric motor provides the torques to
rotate the wheels or the battery panels then

Tgt =0,V 0+ 8w, ) 20)

where Vi, (t) are applied voltages.

We finally note that since the reaction wheels are mounted inside the main body
they have no externally applied torques. Thus, ffi/ =0 for t =1,2,3. The battery

panels may have external torques applied. Under these conditions eq. (14) becomes

Iw——waZw+T+2[T +Tbb + TS

0¥ 0?1 019 * Toy oSl @D

and premultiplying (15)by _lz{ gives

byl +wxl,w +Z,@, + (0+w)xlw]

_ ~ b
=b, + Ty - Ty *mylry - (@+RIb, - @
o
b ~
Ty =k, - T; - b L@+ wxl, +1[Lw +(wtw L w - more (WxR)w] .
I 22)
Similarly, premultiplying (15) by ¢, gives
C ~
Too =& 1y
23)

T . . .
Tl rexlier Lw, (@ rwy)xd e -




When (19), (20), (22) and (23) are inserted into (21) and the orthogonality of a, P—z', and

< is used, we find

_ ) T T . ~
[lo + E](htét +_C_'E-L) Llw= "'EXIO"E +Io
5 2 T T~
eV thwda t B (b voe)Ty @4)
i=1 1=4
- %(b bT+c cT)[leLw+anI w, - m,r, + (XR) w]
ZByDy g el @ teXa s eyt Mty R

Note that for each 1 (15) gives a vector equation. However, the motion of each part is
constrained to be about the axis a, so there isreally only one degree of freedom for each
1, not three. We can reduce (15) to a scalar equation by premultiplying by g_:.- . Using

(19) and the orthogonality of a, EL , Sy we get

- T .
Ty =gl + wXbyo +wXel ;o
- 25)
By tmylg(@xRI(ey @) vy - Ty -ey vy

in order to obfain the compiete sitate differentiai equaiions (Z4) musi be soived
for w which is then inserted into (25). The expression for w, the resulting equations

(25), and (18) are then the state equations.

In order fo proceed further we must be more specific about the physical structure

of the system. Let us define the body axes g_q p éb , g—c as the three principle axes of the

. . .. . o 7
main body then . becomes a diagonal matrix with diagonal elements 1o ZbO Lo

We will assume fhg’r the three reaction wheels are essentially aligned with these body axes
% 9 =&Y

95Ty

93 © éc * €3

where €, are error vectors with small components.
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We will make the following additional assumptions regarding the construction of the vehicle.

1) The c.m. of the composite vehicle is located very near the body axis origin
(i.e., R isa small vector representing the error in centering the system).

2) The c.m.'s of the reaction wheels lie essentially on the coordinate axes so

that
BTttty
Ty = b, * &5
r3 =3k ey

. . .th
where €, are small error vectors and r, is the distance from the c.m. of the 1 — wheel

i
to the origin.

3) Let gq denote the roll axis of the vehicle we will assume that r, and s
lie essentially along the éb or yaw axis (i.e., perpendicular to the roll axis) so that

r

FLINRg
s =58y t g

4) The pivot axes of the solar panels are essentially aligned with _gb axis (see
Fig. A2 ) so that

cos O sin O

G TE tEg s b= 0 f ey, ¢, = 0 * & (26)
sin & ~cos &

where the angle 6 is indicated in Fig. A-2 and ¢ terms are small. Similarly
.cos & sin 0
= - -+ o -4 = -

95 = by *€1gs kg 0 100 &5 0 [*&9 27)

sin O -cos O

Note that when 6 = 0, 94 is essentially aligned with éq and <4 with —g_c .




Solar Panel

7 Sunshield

&m

FIGURE A-2 NOMINAL ALIGNMENT OF SOLAR PANELS
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Using these assumptions and neglecting the small error terms we find that A?L =

5

RN T
lLi = Iﬁ + JJi and if we define the matrix Z ] élo + szl(éiftj{ + Etgi)li
we obtain - N -
g, 0 T3
..] _ ~
' -1o T, O
R 33 |
SO
X33 0 13
Lol > 2
T .
g ] o 11733~ 713 o
L1233 B3 X
) 0
| 13 1" |
where
:E =1 +% 2+J_’ +I .+, +1.) 26+(1 +I)'26
11~ L0 t}“"‘ari b3 T g T Gy T o5 cos ca tles) s
L A 2 2
Loy “dpo T Ay t Ly T myry T mgrg
i =7 +1I,.+1_ + é,; 2+ I +1 ) ‘26+(I + [ )c0526
33 ~ 0 T2 T i#3mtri (Lyq *1pg5) sin ad T ies

Z..=( +1,.-1 —Ic)sinécosf)

b4 b5 c4d 5

0

SO



When the assumptions and the expression for Z are used in (24) we obtain

™ ~ ~ ~ 1
o fy - w e st w famwug oV B+ T T, T )
ol e —
[o]
~-ww I -1 +1I -mr2—I +mr2+I -I)+ww
g% a0 T oo T ™M T T T T ad) T “alad
b ~~
W Wplyy TBywy TR Wy — Bgws TV TV oV Ty
w
| 7 ¢] —— - - - — — = — = — — ———
| "9auf) T g T g T Cofy ey dyy By TagVy + (T Ty Ts )
(28)
where
=0 " 2o T At T Ty Tha2 T T lag s T Uy TLyg) cosO
—(lc4 +Ic5) sin25 + m]r? - myr, - mlirf1 - m5rf_>
) , | 2
o =do " Lo t oo "2 Thaz T Lg T Ly T Ly T Uy T g) cos D
2 2 2 2
+ (Ib4 + Ib5)5m 65 + Myl = Mars + M,y + Ml
fa =yl o Ty - wslis
while from (25) we obtain
. Iy -4y B %
W, T -~k - ww - w, -5V
1 a T Y% o9 1
al al al
L,-21., B o
o 2 ' B %
Wy T Ty, T e T, I Vy
a? a? a?
L.O ="L:J —wwM_ﬁw __a_3_
3 ¢ ™ %% I T, % T, 29)
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L -1 L -1

w, = -W - ww b4 c4 (c0526 - sin2 6) + (032 - ‘-‘-‘2)-———-——-—b4 c4 sin 0 cos O
4 b a c I a c I
a4 c4
I V"
IQ4 4 Iq4 4 104
L, -1 I -7 )
W, =W otw w b5 —Eé(coszé—sinZG) _ (w2-w2) b5 c5 sin 8 cos 6
5 b a b 1 a c 7
a5 o5
___3._5__ w - _ai V + T4b
I, Y4 I, '5 T,

When the expressions for (.;)c , L:)b and o'JC from (28) are inserted into the equations (29),
the resulting equations together with (28) and (18) are the complete state differential

equations of the system. They are

€.
I

w,
wcZE]SI‘](Y,V,T)+233r3()’IVIT)
o =< T (y,V,T)-Z T.(y,V,T)- wu b "B A o -1y
al al al
L,-1 B o
S _ c2 b2 "2 _ 2
Wy = "Bl (v Vi T) - ww — -9 1.V
a2 a2 a2
I.,-1 B o
- ) c3 b3 3 _ 3
@y = Bl Vi) = Bagly v, Vo T) -y —7—— =5 w3 =7~ V3
a3 al a3
) cos 6 sin 6
01 %o - Y
cOs 2 C COS 2

62 = wb sin 93 + wc cos 93

63 = wo - wb tan 92 cos 63 + wc tan 62 sin 93




b

. 4 c4 2 .2
w, = -Ezzrz(y,V,T) - wowc—I—-—-—(cos - sin"0)
a4
I -1 T - Bw, ~aV
+(w2—w)——b4——s—4—sin6c056+ 4b 4 4 44
a c I I
a4 a4
Lhs = Zes 2 2
cs , .
ws Zzzrz(y,V,T) + w W 7 {cos™ 6 - sin~6)
a5
L. -1 T +B.w. +taV
- (w2 - w2)—————————-b5 c3 sin 0 cos & - 5b 5 5 > 3 (30)
a c v v
a5 a5
where
~
Dy Vo T) = oo fy = w By + @ (Wl o+ wyly = @slio)
- wpglyg F eV By (T, F Ty F Ts)
TG, V,T)=-ww (I -1 +1. ~me> I +my2+L.-T.]
2V a c a0 c0 al [ cl 33 b3 a3
T We¥3 a3 T YW tar T Py T PgYy T PsWs T HYy
AL AT S
Talys Vo T) = -w g fy =gy + gLyl = @plyy * @slgs)
tow Lo FBguy tegVa  (Ty 4T, 4 T50)
and
5 =7 Bl AL 4L (L 4L )eos2e + (I . +I ) sind
11 a0 141 it b3 T¢2 b4 b5 cd 5
13- (Ib4 +Ib5 —Ic4 -Ics)smﬁ cos 0
S 2
Tog “hpo T 1 B myrgd 4+ g
i=1,3
: =7 .+ % m.r2.]+I +1  + (I, +1 )sin26+(I +7 )c0525
33 c0 L £3 L't b2 ¢l bd “b5 c4d " c5
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11 - )
zn 33'7%3
1
222_i
22
11
T =
33 2 =2
En 33'213
T - Z;13
13 =z ~ 2
En 33"213

~

It should be noted that the torques T4j , TS.]' for J =a, b, c consist of ex-
ternal disturbance torques only, but the TO.]' 's include both reaction jet torques Trj and

the disturbance torques. This will be denoted as

~

Tog = Tes ¥ oy
and T4j :T4J'

Ts; = Ts;
for J =a,b,c

Note also that voltages V4 and V_ appear in the equations. These are the

5
voltages which must be applied to the motors connected to the solar panels in order to keep
the panels facing the Sun. They are not control variables, but are presumed known time

functions.




Linearized Equations about Nominal Motion

In a well-designed control system, the state y is expected to be very close to
the desired nominal motion represented by the state YN ¢ the control torques for which
are derived by the application of the nominal controls VN . Consequently, we can study

the deviations from the nominal motion by means of linear "error equations".
Let us represent the angular velocities as
= + .
w, () th(t) A, (1)

for L =a,b,c,1,...5 where Wi\ is the precalculated nominal motion and >\zl

denotes the deviation from nominal behavior. Similarly we write

|
I

ei(t)_etN(t)+yt(f) t =a,b,c

and

Vi(f)=VtN(t)+uL(t) t=1,...5

where ‘yt('r) and uz./('r) are again deviations and Vz', N OFe the voltages required to
produce the nominal behavior. We assume further that the reaction jets will not be used
to control small deviations from nominal motion. Such deviations will be controlled using
only the reaction wheel voltages. Furthermore,we will not be concerned with control of
the solar panels. That is we well not attempt to generate Uy and ug - Since these
controls will be generated by an independent control loop, wherever they appear they will
be included (to first order) in error terms. Then, since the nominal motion is assumed
known, we need only consider the deviations which are governed by linear differential
equations obtained by inserting the above expressions for W, s G,L and V. into the com-

plete state equations (30) and equating the 5\1., and ‘)./'L terms to the terms linear in A;

Y.

; and u; plus any disturbance torques. This gives
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where

1

21

31

>

. - _
A A v
a 1 1
)\4
= -A )xb +B )\2 +R u2 + L \ “’rT]
5
LAC_ L)\3- LU3_
- _ _
A A -l U ]
1 a 1
>\4
=-D )\2 +C >\b -L N -T v, —T]
5
%3] | *e | ¥ 3]
)\o ‘y]
= P Ayl T Q Y5
V\C_ 73
. - - _
Aa X] X Y1
4
=Y )\b + X )\2 + W N + Z u2 +T2
5
*e '3 |3,
A isa 3x3 matrix with elements
= i : y 7 -
12,205 Zaflegy * Bialeondin * @undas T Wsnlas!

, 2
— - - - \ -/ \
ool oo =20t 1 = ey t 3 T a3 T ™) Yo T e

~

13513 T Eaafy e T Baslontan * “anas T “sNas)

(31)



= [Zf, 213213] NTENE T IR eyt B @andas T F 3N
Ayy =0
Az = 1Zy5f) = Tagrgle T 1283 F Eaaf 1w+ T 3%anTas ~ Fas® N
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AZI +[-ch(c0325— sin26) +

Ib4 } Ic4
—

2waNsin 6 cos 0]
a4

- A2] + [ch(c0526 - sinzﬁ) -

Ib5 - Ic5
I

ZwONsin 0 cos 0]
ab

Ay [qu(cosze - sin28) -

2chsin 0 cos 6]

4

-4

4
I

a4

c4

- A

2w

23

cN

sin 0 cos 0]

I

-7

5
I<:|5

ch

[wc‘N(cos2 6 - sin2 6) +

. cos 63N ) sin 63N T
cos 62N cos 62N
0 sin 93N cos 63N
L] - tan 62N cos 93N tan 92N sin 63N |
. sin 62N ( — o) ) [wa sin 93N + W_\y € 63N]
7) “N % P3N T YN N P3N cos B
cos B 2N
2N
0 0 wacos 63N - chsin 63N
w ,,sin 6 -w cos B
N 3N bN 3N
0 < tan (w, ,sinB, - w ,,cosB
c05292N b Cpnsin By~ Wneosh
B 1
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By By B3
X =

| B B2 B3

ToBy B4/ Ty L
W =

| Za2Py Tp2Bs~ 85/ Los

0 -2322a2 0

Z =

o L, 0

ooTob * Tap” Las
T, -

i Z22Tob ™ Tsb / Las

Thus the deviation from the nominal motion is governed by the linear differential equations

(31) which are of the form

Fx + Gu +w (32)

X
where
x:y—YN:{quxblxclx‘l’K2IX3IY‘|IY2I73IA4'A5}

Uu=v-=-yv

N

w is a vector due to disturbances to the nominal motion

resulting from sources such as listed in section 4.

Since we assumed that deviations from the nominal will be corrected by applying correction
voltages to the reaction wheels and not by activation of the reaction jets, u will be a

3-vector.




The matrices F and G are

A oB b0 L 3
S N b [N
C i D i o0 i-L 3
F=] - b= boomom b---
Ploo b a }o 3
S S I L
Y oL X 10 iow 2

R 3 T 3

T 3 -T, 3
G=|---- and w = |-

0 3 0 3

|z ] 2 T | ]2

Nominal Motion

To illustrate how the nominal motion may be determined, we will use the fol-

lowing simplifying assumptions.

1. The Earth and Mars are traveling in the solar ecliptic plane in known
circular orbits about the Sun and the vehicle is in a known circular orbit about Mars.
2. The vehicle mechanical axis _50 is pointed to the center of the Earth.

3. The solar panel faces (i.e., b, and b

4 5

) are pointing toward the center

of the Sun.

Thus, in terms of the geometry of Figure (A.3) we can define nominal motion by
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FIGURE A-3 ORIENTATION OF PLANETS




and from (17) we have WoN =0, W= I.l4, W.N = 0 which results in

0 1 0T
P=|0 1

1 0 0

0 0 0
Q=10 0 ] g

o -1 0

We have found that
p] sin My - pzsin By - p3sin Ha
p] cosu] —p2c05p2 - p3cosp3

tan u.4(f)

and that to first-order

i

. .o 2m
[,14(1’) ko + k] sin (—.GAf + [J.O)

where the constants ko, k] , and Ko depend on the initial orientation of the three

bodies and T3 is the period of the vehicle's orbit (2.05 hours for an orbit 400 km above

the surface),

2‘"(cos u]O + tan u40 sin ‘LIO)_?_Z_ cos uZO + tan u.40 sin “20
. - ] T Py Ty
0o 2 Py Py
1 +tan” p _ 3
40 cos fy F]— cos k1 P, cos fay

_pi_z_"_\cosu ‘
ap] T3 40

i Py Py
coOS IJ.IO - S‘]— CcOS “.20 - —p“]— [of 0} u30



=_m _
Ho =2 ~ Hy

where T,| = 365.26 days is the period of the Earth orbit

T2 = 686,98 days is the period of the Mars orbit
and “iO denote the initial orientation.
From the diagrom we find that
p2 sin “2 + p3sin Ha

fan (IJ-4 - 0) = p2cos “2 +p3cos u3

but since P, > >>p3 we get tan (u4 - 8) = tan Ko and as shown in Figure (A.3)
(u4 - 08) and u.2 differ by almost 7 so
0= u,4 " Ky + 7
To determine the nominal values w Y \% \%

2N’ 2N’ "4N’ 5N

assumed nominal motion, in the absence of disturbances, we have

note that for the

ONTWN 0 VN T Va0
since the solar panels track the sun we have WaN = 6 so that
“an T Hg T By “sn T Hp - Ky

We still must find wony Using the nominal values determined thus far in the state equa-

tions (28) and (29), for W CaN and Weny + We get
W = Mg = TplapVorg + Bywa TV B W T ¥V T Fs s !
- P . . _ -—L
“aN T BT H T TN T T EAYNIEN
w L

SN B2 THT 9N T T loe gV + Bswop !

100




These are three equations in the four unknowns Wony 7 V2N ’ V4N ’ V5N .

additional equation is obtained from the law of conservation of momentum. Let Ib be the

total moment of inertia of the composite body about the & b axis. Then

~

bUN T l2®an t Lag¥an T LasWsny = K = const.

From this and the known expressions for AN and Weny

~

K=(f, + Ly Igh by * Loy + 10) by

and

A + 7 )]

_ ] s
2N '312“['32“’21\1 F 2y - ) L)

~

In order to obtain some numerical values for the nominal motion let us assume K = 0

(i.e. no initial angular momentum) and the specific initial orientation of the planets

bo =k =0r g =T, By =T

This gives
L= - S S _Tyrad
fhy = --484X 107 = .25 X 10 sin(.05A1 - o) 122
with At in minutes or
= 806 X107 - 417 X 107 sin@.5 X 107447 - ) 12
4 sec
with AT in seconds. For AT = 0 we get
i 4(0) = -.3953 x 1077 4
5(0) = O rad.

An
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At AT = 1800 secs. (i.e. At = 30 min) we find

. -5 rad
u4(AT) = -,777 X 10 cec
5

5(AT) = - 28.576 X 10~ rad

Since the linearized equations need the nominal values of 6

N’ “bN‘ “4N’ “5N which

change only slightly over a thirty minute time interval we will use constant values chosen

. .. . -7 rad
from the middle of the range of variation. Thus choose N .583 X 10 s
6, =-15X 10" rad
N
- - -7 rad
w4N = w5N 1.642 X 10 o
_ -2 rad
Wy = 112 X 10 e
. _ _ -5
sin ON —6N 15X 10
cos 6N =1,

Typical Vehicle Parameters

A vehicle configuration was chosen fo conform to the general specifications
supplied by ERC that the vehicle have a total weight of about 3100 lbs. (~1550 kg.) with
a 12 ft. (~4m.) telescope sunshield weighing 100 Ibs (~50 kg.). Since the telescope
diameter is about 30 in. the sunshield diameter was taken as 1 m. Cylindrical and rect-

angular components were assumed to facilitate the evaluation of moments of inertia.




TABLE A.1

MOMENTS OF INERTIA

For the body with sunshield as shown in Figure (4.1)

2
IaO = ,1125 kg-m

L 2
IbO —ICO = 2062 kg-m

For double wheels each of mass 5 kg., radius 10.61 cm and thickness 3 ¢cm on a

30 cm. shaft centered at the body center of mass.

2
I, =.1125 kg-m

_ _ 2
Ibi/ = Ic‘L = ,2539 kg-m

el v . . - -_— 1 a 1\
ror solar paneis ds shown In rigure \«.1y

. _ 2
I°4—I°5—-33kgm

5 N 2
Ib4— Ib5-330 kg-m

I

_ - _ 2
4= Ls = 330 kg-m

For composite body about &b

1 = 2128 kg-m?>
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The power requirement is approximately 2000 watts. The information given in
Report AFF DL-TR-64-168, Pt 111 of Wright-Patterson-Flight Dynamics Laboratory prepared
by GE-Missiles and Space Division would indicate that 500 watts of power from a V-ridge
concentrating array requires 56.8 f’r.2 of active cell area, a paddle area of 133 Fr.2, and
an array weight of 298 lbs/kw. Scaling up to 2 kw. indicates a paddle area of 533 ff.2
and weight 596 lbs. The values chosen were 440 Ibs. and 253 ft. 2 and are based on the ex~

pectation of improved efficiencies in conversion of solar energy and reduction of the

paddle area to active cell area.

The reaction wheels were chosen to give a moment of inertia of approximately
.1 kg-—m2. This number was obtained by scaling up from a value of .01 kg—m2 given in
[ 15] for a vehicle with moment 200 kg-m2. Double wheels on a single shaft were chosen
so that the center of mass of each wheel combination could be placed close to the center

of mass of the body. This produces a better balanced vehicle.

Table A.1 contains the values of moments of inertia of the vehicle which were

calculated using the dimensions indicated in Figure 4,1 .

The parameters o, and ﬁz', of the motors driving the reaction wheels were de-
termined as follows: the motor time constant was assumed to be 30 sec. Thus, with
2
I =.1125kgm-m~ we have

3 newton-meters t=1,2 3

-ﬁ'/l T M 30 rad/sec

The no load speed w was assumed to be 100 rad/sec (about 1000 rpm.). The stall tor-

NL
que T5 is found to be

Ts = -3 wNL = . 375 newton-meters

Now, assuming this torque is produced by a voltage of 25 volts we obtain

a, =3.75X 107 /25=1.5X 1072 Dewton-meters — ; _, 5 3
L volt




The time constant of motors used to control the solar panels was assumed to be

about 2 seconds, resulting in the following motor constants

3 X 10_4 newton-meters/volt

R
I
133
I

newton-meters

ﬁ4 - ﬁ5 =1 rad/sec

Using these numbers we find

| T, = 4508 kg-m2
SR 2
i3 = Zgy = --009 kg-m
2

Z,, = 2062 kg-m

22
T, = 5863 kg-m>
33 9
and since )5]3 is so small compared to E” and T, we get
D, =2.219X 1074
_ L -4
4422 = 44,8497 X 1V
_ -4
T,y = 1.706 X 10
I -10
L =Ty =3.4X10
and
: .2058 X 10712 0 -.7586 X 107
A=C-= 0 0 0
| 25x10° 0 214X 10712
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832 X 10°°
B = 0
| 155 % 10712
033
D = 0
155 x 10712
0
i -2
L= | .7275 X 10
o
0 -.1818X107°
X = .
0 .1818 X 10
3.328 X 107°
R = 0
| 5.1 X 10712
-.1333
T = 0
| -5.1x 10712

106

-.7275 X 10

0
L1818 X 10~

0

.033

0
2

0o |

0
7.274 X 10

0

-.1333

5

6

-.4618

273 X 107
0

64 X 107

273 X107

7275 X 1072

5.1 X10
0

2.558 X 10

-5.1 X 10
0

-.1333

4

6

4]

-

L7275 X 10°

-.4618

12]

6

12 ]

2



0 -7.274%x10°° 0 Y
7= »
0 7.274 X 10 0 T,
" =
0
T
| 2 |
SO
[ 2.2185X1075(T. +T, +1 )+ (T. +T, +T. ) x3.4%x10°'0
: Oa 4a 5a Oc 4c 5¢ *
4
4.8457 X 10747
3.4x1070 (T 4T, 4T ) 4170561074 (T 4T +T. )
' Oa 4a 5a : Oc 4c 5¢
22185 X10°(T, +T, +T.)-3.4x1070(7T +7, +T. )
* Oa 4a 5a : Oc 4c 5¢
B i -4
w = 4.8477 X 10741
i >
BAX 0T (T + T, T ) = 17056 X 1078 (Ty 4T, +T, )
~4.8497 X 10747 + 03037
: ob T b
_4
| 4847 X107 1, - 0303 T,
Note The independent noise quantities are TOb’ T4b’ st, (Toc + T4c| + TSQ)’

(T, +T

Oc 4¢c

+ T

5c)'
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Since it is more convenient to use minutes rather than seconds as the basic time
unit, accelerations and velocities are converted to radians/min” and radians/min, respec-

tively. If t denotes time in seconds and T denotes time in minutes, then angular acceler-

ations are converted by

~

dw, dwi

i 2
dr = (60) dt

where w, is an angular velocity in rad/min and w; is an angular velocity in rad/sec.

In our equations each

3
_a—:i N an, b, FiJ’AJ’ * JE] Gi,j T W
c, |
thus )
—dx—i = 5 (6OF; (60X ) + g (3600 G, ,) u, + (3600w, )
dr 'j:c'l bl S A L‘] x,__“,“:j, ,j:‘-] [ L'J‘ 'j Z:
v R, o = Wy

So we see that the matrices which multiply >\j state variable in (31) must be multiplied

by 60. The matrices multiplying the control voltage and disturbance torques must be mul-
tiplied by 3600.

Further each term

e £ P oA 2
= , + .
dt J=a W J =1 Q7
gives
- = T P (60X ) + ©60Q;.) ¥

dr J=q 1] o J =1 i’
~ 3 N
vJ J vJ
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so we see that in (31) the P matrix remains the same but the Q matrix must be multiplied

by 60.
This gives

Q>
"

.012

1.8 X 10
-597.96

-1.8 X 10

o O O ©O

-.0262
.0262

1.8 X 10~

.0092
-1.8 X 10

-479.9

o O O O
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[60L° LT~ S9EV°

Goey ™ 60L°LZ-

GoLy"  G9EV -

Gogy "~ GoEv”

0101 X 6897 1-

;0L X 8E8¢

0101 X 689°1

;0L X 160°1 0

y01 X 160°1- 0

510! X €60°~

0 ¢-

0101 X €60

,-0L X 16071 0

0 0l X 26¥°

14

51O X €0

50l X Z55°%=

01 01X €£0°

5O X 265°Y

;01X 208"
0101 X SE2

401 X 205" 1~

01-01 X se2L"~|

I
¢ W
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where

-

L

5

LO0799T + .12 X10°T
a C

1.746 TOb

122 X102 T + .614T
[o] C

5

-.0799T - .122X10°T
a [of

-1.746 TOb

- 122 X107

Tq - .614 TC
0
0
0

-1.746 T, + 1097

Ob 4b

1.746 TOb - 109 T4b
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